

Lecture Notes in Computer Science 3324
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ming-Chien Shan Umeshwar Dayal
Meichun Hsu (Eds.)

Technologies
for E-Services

5th International Workshop, TES 2004
Toronto, Canada, August 29-30, 2004
Revised Selected Papers

13

Volume Editors

Ming-Chien Shan
Umeshwar Dayal
Hewlett-Packard
1501 Page Mill road, Palo Alto
CA, 94304, USA
E-mail: {ming-chien.shan, umeshwar.dayal}@hp.com

Meichun Hsu
Commerce One Inc.
12717 Leander Dr. Los Altos Hills
CA 94022, USA
E-mail: mhsu@alum.mit.edu

Library of Congress Control Number: 2005921803

CR Subject Classification (1998): H.2, H.4, C.2, H.3, J.1, K.4.4, I.2.11

ISSN 0302-9743
ISBN 3-540-25049-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11398073 06/3142 5 4 3 2 1 0

Preface

The 2004 VLDB workshop on Technologies on E-Services (VLDB-TES 2004)
was the fifth workshop in a series of annual workshops endorsed by the VLDB
Conference. It served as a forum for the exchange of ideas, results and experiences
in the area of e-services and e-business.

VLDB-TES 2004 took place in Toronto, Canada. It featured the presenta-
tion of 12 regular papers, focused on major aspects of e-business solutions. In
addition, the workshop invited 2 industrial speakers to share their vision, insight
and experience with the audience.

The workshop would not have been a success without help from so many
people. Special thanks go to Fabio Casati, who organized the program agenda
and the proceedings publication, and Chandra Srivastava, who served as the
publicity chair. We also thank the members of the program committee and the
additional reviewers for their thorough work, which greatly contributed to the
quality of the final program.

We hope that the participants found the workshop interesting and stimulat-
ing, and we thank them for attending the workshop and for contributing to the
discussions.

Toronto, Canada Meichun Hsu
September 2004 Umeshwar Dayal

Ming-Chien Shan

Organization

Conference Organization

Conference Chair: Ming-Chien Shan (Hewlett-Packard, USA)
Program Chairs: Meichun Hsu (CommerceOne, USA) and Umeshwar Dayal
(Hewlett-Packard, USA)

Program Committee

Gustavo Alonso, ETH Z r ch, Switzerland
Roger Barga, Microsoft, USA
Boualem Benatallah, University of New South Wales, Sydney, Australia
Christof Bornhoevd, SAP, USA
Christoph Bussler, DERI, Ireland
Fabio Casati, Hewlett-Packard, USA
Jen-Yao Chung, IBM, USA
Francisco Curbera, IBM, USA
Dimitrios Georgakopoulos, Telcordia, USA
Dean Jacob, BEA Systems, USA
Frank Leymann, IBM, Germany
Heiko Ludwig, IBM, USA
Mike Papazoglou, Tilburg University, the Netherlands
Barbara Pernici, Politecnico di Milano, Italy
Calton Pu, Georgia Tech, USA
Krithi Ramamritham, IIT Bombay, India
Farouk Toumani, LIMOS, France
Steve Vinoski, Iona, USA
Hartmut Vogler, SAP Research Lab, USA
Sanjiva Weeravaraana, IBM
Leon Zhao, University of Arizona, USA

ü i

Table of Contents

TES 2004

Robust Web Services via Interaction Contracts
David Lomet . 1

When are Two Web Services Compatible?
Lucas Bordeaux, Gwen Salaün, Daniela Berardi, Massimo Mecella . . . 15

Negotiation Support for Web Service Selection
Marco Comuzzi, Barbara Pernici . 29

From Web Service Composition to Megaprogramming
Cesare Pautasso, Gustavo Alonso . 39

Using Process Algebra for Web Services: Early Results and Perspectives
Lucas Bordeaux, Gwen Salaün . 54

Flexible Coordination of E-Services
Roger S. Barga, Jing Shan . 69

ESC: A Tool for Automatic Composition of e-Services Based on
Logics of Programs

Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, Massimo Mecella . 80

Dynamically Self-Organized Service Composition in Wireless Ad Hoc
Networks

Qing Zhang, Huiqiong Chen, Yijun Yu, Zhipeng Xie, Baile Shi 95

Designing Workflow Views with Flows for Large-Scale
Business-to-Business Information Systems

Dickson K.W. Chiu, Zhe Shan, Patrick C. K. Hung, Qing Li 107

A Practice in Facilitating Service-Oriented Inter- nterprise Application
Integration

Bixin Liu, Yan Jia, Bin Zhou, Yufeng Wang . 122

Discovering and Using Web Services in M-Commerce
Debopam Acharya, Nitin Prabhu, Vijay Kumar . 136

e

VIII Table of Contents

Financial Information Mediation: A Case Study of Standards
Integration for Electronic Bill Presentment and Payment Using the
COIN Mediation Technology

Sajindra Jayasena, Stéphane Bressan, Stuart Madnick 152

Author Index . 171

M.-C. Shan et al. (Eds.): TES 2004, LNCS 3324, pp. 1–14, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Robust Web Services via Interaction Contracts

David Lomet

Microsoft Research
lomet@microsoft.com

Abstract. Web services represent the latest effort of the information technology
industry to provide a framework for cross enterprise automation. One principal
characteristic of this framework is information hiding, where only the message
protocol is visible to other services or client software. This environment makes
it difficult to provide robust behavior for applications. Traditional transaction
processing uses distributed transactions. But these involve inter-site dependen-
cies that enterprises are likely to resist so as to preserve site autonomy. We pro-
pose a web services interaction contract (WSIC), a unilateral pledge by a web
service. A WSIC avoids dependencies while enabling, but not requiring, an
application to be written so that it can provide exactly once execution seman-
tics, even in the presence of failures. And exactly once semantics is essential
whenever commercial interactions involve money.

1 Introduction

1.1 Using the Web for Commerce

The importance of the web for commerce only continues to grow. But that growth
has been a bit “cranky”. Growth is impeded by the barriers of legacy systems, differ-
ing protocols, the lack of robustness, and a lack of an integrative framework. But
things are changing, as industry is well aware of these difficulties. The current
“horse” being ridden is that of “web services”, which offers the start of a compelling
story about how to break down these barriers and produce the flourishing of com-
merce on the web.

So, abstractly, what are web services? And why are web services the way to go?
The web services effort places special emphasis on “information hiding”, an idea that
began with David Parnas over 30 years ago [10]. The idea is to minimize what appli-
cations need to know in order to interact meaningfully with the service. Web services
exploit message protocols, using a common syntactic framework (XML with SOAP)
but are otherwise opaque in terms of how they are implemented behind their service
front. This makes it possible for diverse systems to interact, by hiding the “ugly de-
tails” behind the service interface.

There is a lot to the web services story (UDDI [9], WSDL [11], etc.) but the focus
here will be on the robustness of web services and the applications that use them. Cur-
rently, web applications either are not very robust, or need hand crafting to be so. But
for pervasive use of web services, we need to ensure both robustness and a standard,
non-intrusive way of making it possible.

2 D. Lomet

1.2 Making Web Services Robust

There is a long history of efforts to make distributed applications robust [6]. The goal
of most of these efforts has been to reduce the work lost in a long running application
due to a system crash. Commercial systems need to ensure that no committed work is
lost. Most commercial efforts evolved in the transaction processing community, with
TP monitors and distributed transactions [1, 7]. And such transaction processing ef-
forts have been quite successful in the context of relatively closed systems. There are
efforts to extend this style of support to the web services world (e.g. WS- Coordina-
tion [12]). However, TP has had much less impact on highly distributed, largely
autonomous, and heterogeneous commercial systems.

Classic transaction processing relies heavily on distributed transactions. But even
in the classic TP world, distributed transactions are not usually very “distributed”.
They are used mostly for partitioned databases and for stateless applications interact-
ing with queue managers. It is rare for this technology to be used across enterprise
boundaries, and is not widely used even across organizational boundaries within a sin-
gle enterprise. One can hypothesize a number of reasons for this. Protocols are too
tied to a particular implementation base. Or these protocols require too much
compromise of autonomy. For example, who coordinates a transaction and who will
block if there is a failure at the wrong time? But without distributed transactions,
there are no TP-based solutions. The situation then reverts either to non-robust appli-
cations and systems or to roll-your-own special case solutions.

1.3 Interaction Contracts to the Rescue?

I want to make a case for “interaction contracts” [5] as the paradigm for robust web
services. Interaction contracts enable applications to be persistent across system
crashes, without distributed transactions. They enable applications to interact with
“transactional services” with the application neither participating in the transaction
nor perhaps even being aware that there is a transaction involved. Thus, atomicity can
be encapsulated within an “opaque” web service, and supported by transactions
whose distribution can be limited to the traditional TP domain, and whose participants
could be databases, queue managers, etc.

It is important to emphasize here that atomicity within web services is still highly
desirable, perhaps essential. One wants an e-commerce sale to be all or nothing: no
money—no product; money—product. The in-between states are unacceptable. But
whether this atomicity is provided by a single local transaction, a distributed transac-
tion, a workflow system, or some other technology, should be immaterial at the level
of the web service.

If the applications using web services are not participating in transactions, then
how are they made robust? The answer here is that interaction contracts capture pre-
cisely what needs to be done for applications to be persistent, surviving system fail-
ures. These applications live outside of any transaction, and because they are persis-
tent, they can robustly provide program logic for dealing with failures, which might
have resulted from one or more transaction aborts or system crashes. This is impor-
tant, as traditional TP with stateless applications had no convenient place to put pro-
gram logic dealing with transaction failures.

 Robust Web Services via Interaction Contracts 3

There is more to robustness than persistence (the ability for an application to sur-
vive system crashes). Traditional TP can provide not just applications that survive
system failures and have certain atomicity properties. It also provides solutions for
other robustness attributes: availability, scalability, and load balancing. Fortunately,
these attributes can also be provided with interaction contracts and persistent applica-
tions. We have discussed these attributes in papers describing our prototype Phoe-
nix/App system [2, 3] that provides transparent support for persistent .NET applica-
tions [8]. So I will not discuss these here.

2 Interaction Contracts

2.1 Overview

Most of what is described in this section is based on recovery guarantees [4, 5] that
provide exactly once execution. Interaction contracts are obligations for each party
involved in sending or receiving a message. The intent of the obligations is to ensure
that both sides of the interaction can agree, even in the presence of a system crash of
one or both of the parties, as to what the interaction consisted of and whether it oc-
curred. Each party to the contract guarantees that enough information is stably re-
corded so that it can continue execution after a system crash, with agreement as to
whether the interaction occurred and the message that was exchanged.

Each element of a distributed system is characterized with a component type.

1. Persistent Component (Pcom): a component whose state is guaranteed to sur-
vive system crashes, the execution result being as if the crash did not occur;

2. External Component (Xcom): a component that is outside of the control of our
infrastructure and for which we cannot make a guarantee;

3. Transactional Component (Tcom): a component that executes transactions, and
that guarantees that the effects of committed transactions will persist and the ef-
fects of uncommitted transactions will be erased.

Between persistent components and each component type, there is a particular fla-
vor of interaction contract that needs to be honored for persistence and exactly once
execution to be assured. But first—an admission. No system can guarantee failure
masking under all circumstances. For example, in a system interaction with a human
user, if the system crashes before all input from the user is stored stably (usually by
logging), then the user will need to re-enter the input. Despite this, the “interaction”
can be “exactly once”. And we can minimize the window of vulnerability, and that is
what an external interaction contract does. For the other interactions, we “shut” the
window.

As there are three component types, we also have three flavors of interaction con-
tracts.

1. Committed Interaction Contract (CIC): between persistent components;
2. External Interaction Contract (XIC): between external component and persis-

tent component;
3. Transaction Interaction Contract (TIC): between persistent component and

transactional component.

4 D. Lomet

2.2 Committed Interaction Contract

I’ll describe a committed interaction contract here and refer you to [5] for external in-
teraction contracts. Transaction interaction contracts, which underlie our web services
contract, are described in the next section.

A committed interaction contract between two Pcoms consists of the following
obligations:

Sender Obligations:

• S1: Persistent State: The sender promises that its state at the time of the message
or later is persistent.

• S2: Unique Persistent Message
o S2a: Sender promises that each message is unique and that it will send mes-

sage repeatedly until receiver releases it from this obligation (R2a)
o S2b: Sender promises to resend the message upon explicit receiver request

until receiver releases it from this obligation (R2b).

Sender obligations ensure that an interaction is recoverable, i.e. it is guaranteed to
occur, though not with the receiver guaranteed to be in exactly the same state.

Receiver Obligations:

• R1: Duplicate Message Elimination: Receiver promises to eliminate duplicate
messages (which sender may send to satisfy S2a).

• R2: Persistent State
o R2a: Receiver promises that before releasing sender obligation S2a, its state

at the time of message receive or later is persistent. The interaction is now
stable, i.e. the receiver knows that the message was sent.

o R2b: Receiver promises that before releasing the sender from obligation
S2b, its state at the time of the message receive or later is persistent without
the need to request the message from the sender. The interaction is now in-
stalled, i.e., the receiver knows that the message was sent, and its contents.

CIC’s ensure that the states of Pcoms not only persist but that all components “agree”
on which messages have been sent and what the progress is in a multi-component dis-
tributed system. S2 and R1 are essentially the reliable messaging protocol for assur-
ing exactly once message delivery, coupled with message persistence, while S1 and
R2 provide persistent state for sender and receiver. Reliable messaging is not suffi-
cient by itself to provide robust applications. Also, the CIC describes the require-
ments more abstractly than a protocol in order to maximize optimization opportuni-
ties. For example, it is not necessary to log an output message to persist it if the
message can be recreated by replaying the application from an earlier state.

In our Phoenix/App prototype [2, 3], our infrastructure intercepts messages
between Pcoms. It adds information to the messages to ensure uniqueness, resends
messages, and maintains tables to eliminate duplicates; it logs messages as needed to
ensure message durability. Message durability permits Phoenix to replay components
from the log, so as to guarantee state persistence (see, e.g. [3]). Because the intercep-
tion is transparent, the application executing as a Pcom needs no special provisions in
order to be persistent, though some limitations exist on what Pcoms can do.

 Robust Web Services via Interaction Contracts 5

2.3 Transaction Interaction Contract

A transaction interaction contract1 is a model for how we deal with web services.
Thus we describe it in detail. The TIC explains how a Pcom reliably interacts with,
e.g., transactional database systems- and what a transactional resource manager (e.g.
DBMS) needs to do, not all of which is normally provided, so as to ensure exactly
once execution.

When a Pcom interacts with a Tcom, the interactions are within the context of a
transaction. These interactions are of two forms:

• Explicit transactions with a “begin transaction” message followed by a number
of interactions within the transaction. A final message (for a successful transac-
tion) is the “commit request”, where the Pcom asks the Tcom to commit the work
that it has done on behalf of the Pcom.

• Implicit transactions, where a single message begins the transaction and simulta-
neously requests the commit of the work. This message functions as the “commit
request” message.

For explicit transactions, the messages preceding the commit request message do
not require any guarantees. Should either Pcom or Tcom crash, the other party knows
how to “forget” the associated work. The components do not get confused between a
transaction that started before a crash, and another that may start after the crash. The
later is a new transaction. Further, at any point before the “commit request” message,
either party can abandon the work and declare the transaction aborted. And it can do
so unilaterally and without notice. The only Tcom obligation is the ability to truth-
fully reply to subsequent Pcom messages with an “I don’t know what you are talking
about” message (though more informative messages are not precluded).

At the end of a transaction that we want to commit, we re-enter the world where
contracts are required. Interactions between Pcom and Tcom follow the re-
quest/reply paradigm. For this reason, we can express a TIC in terms that include
both the request message and the reply message. We now describe the obligations
of Pcom and Tcom for a transaction interaction contract initiated by the Pcom’s
“commit request” message.

Persistent Component (Pcom) Obligations:

PS1: Persistent Reply-Expected State. The Pcom’s state as of the time at which the
reply to the commit request is expected, or later, must persist without having to con-
tact the Tcom to repeat its earlier sent messages.

• The persistent state guarantee thus includes the installation of all earlier Tcom re-
plies within the same transaction, e.g., SQL results, return codes.

• Persistence by the Pcom of its reply-expected state means that the Tcom, rather
than repeatedly sending its reply (under TS1), need send it only once. The Pcom
explicitly requests the reply message, should it not receive it, by resending its
commit request message.

1 The form of transaction interaction contract presented here is the more complete specification

given in the TOIT paper [4].

6 D. Lomet

PS2: Unique Persistent Commit Request Message: The Pcom’s commit request
message must persist and be resent, driven by timeouts, until the Pcom receives the
Tcom’s reply message.

PR1: Duplicate Message Elimination: The Pcom promises to eliminate duplicate
reply messages to its commit request message (which the Tcom may send as a result
of Tcom receiving multiple duplicate commit request messages because of PS2).

PR2: Persistent Reply Installed State: The Pcom promises that, before releasing
Tcom from its obligation under TS1, its state at the time of the Tcom commit reply
message receive or later is persistent without the need to request the reply message
again from the Tcom.

Transactional Component (Tcom) Obligations:

TR1: Duplicate Elimination: Tcom promises to eliminate duplicate commit request
messages (which Pcom may send to satisfy PS2). It treats duplicate copies of the
message as requests to resend the reply message.

TR2: Atomic, Isolated, and Persistent State Transition: The Tcom promises that
before releasing Pcom from its obligations under PS2 by sending a reply message,
that it has proceeded to one of two possible states, either committing or aborting the
transaction (or not executing it at all, equivalent to aborting), and that the resulting
state is persistent.

TS1: Unique Persistent (Faithful) Reply Message: Once the transaction terminates,
the Tcom replies acknowledging the commit request, and guarantees persistence of
this reply until released from this guarantee by the Pcom. The Tcom promises to re-
send the message upon explicit Pcom request, as indicated in TR1 above. The Tcom
reply message identifies the transaction named in the commit request message and
faithfully reports whether it has committed or aborted.

A TIC has the guarantees associated with reliable message delivery both for the
commit request message (PS2 and TR1) and the reply message (PR2 and TS1). As
with the CIC, these guarantees also include message persistent. In addition, in the
case of a commit, both Pcom (PS1) and Tcom (TR2) guarantee state persistence as
well. As with CIC, we stated TIC requirements abstractly.

2.4 Comparison with Transaction Processing

Unlike persistent components, traditional transaction processing applications are
stateless. That is, there is no meaningful state outside of a transaction except what is
stored explicitly in a queue or database. And, in particular, there is no active execu-
tion state. Each application “step” is a transaction; the step usually is associated with
the processing of a single message.

A typical step involves reading an initial state from a queue, doing some process-
ing, updating a database, digesting a message, and writing a queue (perhaps a differ-
ent queue), and committing a distributed transaction involving queues, databases, and
message participants. This requires 2PC unless read/write queues are supported by

 Robust Web Services via Interaction Contracts 7

the same database that is also involved. When dealing with distributed TP, queues are
frequently different resource managers, and so is the database. So typically, there are
at least two log forces per participant in this distributed transaction.

Because all processing is done within a transaction, handling transaction failures
requires special case mechanisms. Typically, a TP monitor will retry a transaction
some fixed number of times, hoping that it will succeed. If it fails repeatedly, then an
error is posted to an administrative (error) queue to be examined manually. The prob-
lem here is that no application logic executes outside of a transaction. Program logic
fails when a transaction fails. So how does an application understand what happened
to its request if a reply is enqueued on an error queue?

There is, not unexpectedly, a relationship between interaction contracts and dis-
tributed transactions. Both typically require that logs be forced from time to time so as
to make information stable. But the interaction contract is, in fact, the more primitive
notion. And, if one’s goal is application program persistence, only the more primitive
notion is required. Only if rollback is needed is the full mechanism of a transaction
required. Further, in web services, as for workflow in general, “rollback” (compensa-
tion) is frequently separate from the transaction doing the forward work. For distrib-
uted, web services based computing, we do not believe that the tight coupling and
high overhead needed for transactions will make them the preferred approach.

There is an even deeper connection between interaction contracts and 2PC. The
message protocols in two phase commit are, in fact, instances of transaction interac-
tion contracts. However, by unlocking the TIC from the commit coordination
protocol, we make it possible to have a better, more flexible, efficient, and opaque
end-to-end protocol for making applications robust. It is these properties that make
interaction contracts well suited for web services applications. We’ll see this in the
next section.

3 Opaque Web Services Using Interaction Contracts

3.1 Web Services Characteristics

The setting for web services is quite different from traditional transaction processing.
The TP world was usually completely within an enterprise, or where that wasn’t the
case, between limited clients and a service or services within a single enterprise. But
web services are intended specifically for the multi-enterprise or at least multi-
organizational situation. Site autonomy is paramount. This is why web services are
“arms length” and opaque, based on messages, not RPC. This is why the messages
are self-describing and based on XML.

Because web services are opaque, a transaction interaction contract is not quite
appropriate. An application is not entitled to know whether a web service is perform-
ing a “real” transaction. It is entitled to know only something about the end state.
Further, a web service provider will be very reluctant to enter into a commit protocol
with applications that are outside of its control. But web services need to be con-
cerned about robust applications. In particular, a web service should be concerned
with enabling exactly-once execution for applications. This is the intent of the web
services interaction contract.

8 D. Lomet

3.2 Interacting with a Web Service

There can be many application interactions with a web service that require no
special guarantees. For example, an application asks about the price and avail-
ability of some product. Going even further, a customer may be shopping, and
have placed a number of products in his shopping cart. There is, at this point, no
“guarantee” either that the customer will purchase these products, or that the web
service will have them in stock, or at the same price, when a decision is eventu-
ally made. While remembering a shopping cart by the web service is a desirable
characteristic, it is sufficient that this remembering be a “best effort”, not a guar-
antee. Such a “best effort” can be expected to succeed well over 99% of the time.
Because of this, it is not necessary to take strenuous measures, only ordinary
measures, to do the remembering. But a guarantee must always succeed, and this
can require strenuous efforts. We want, however, to reserve these efforts for the
cases that actually require them.

By analogy with the transaction interaction contract, guarantees are needed only
when work is to be “committed”. As Tcom’s can forget transactions before commit,
so web services can forget units of work. An application can likewise forget this unit
of work. No one has agreed to anything yet. There is no direct way an application
can tell whether a work unit is a transaction, or not. (Of course, it might start other
sessions with other work units and see whether various actions are prevented, and
perhaps infer what is going on.) Whether there is a transaction going on during this
time is not part of any contract.

A web service may require that an application remember something, e.g. the id for
the unit of work, as it might for a transaction, or as it might for a shopping session
with a particular shopping cart. But this is not a subject of the guarantee. The guar-
antee applies exactly to the message in which work is going to be “committed”. Eve-
rything up to this point has been “hypothetical”. Further, if the web service finds the
“commit request” message not to its liking, it can “abort”. Indeed, it can have amne-
sia in any circumstance, and when that happens, there is no guarantee that the web
service will remember any of the prior activity.

3.3 A Web Services Interaction Contract

It is when we get to the “final” message, e.g. when a user is to purchase an airline
ticket, that we need a guarantee. In a web services interaction contract (WSIC), only
the web service makes guarantees. If the application also takes actions of the sort re-
quired of a Pcom in the transaction interaction contract, then it can ensure its persis-
tence. Without the WSIC, it would not be possible to implement Pcoms interacting
with web services. But the web service contract is independent of such an arrange-
ment. Thus a WSIC is a unilateral pledge to the outside world of its applications.
Nothing is required of the applications.

The WSIC requirements for the web service resemble the requirements imposed
on transactional components by a TIC.

 Robust Web Services via Interaction Contracts 9

Web Service (WS) Obligations:

WS1: Duplicate Elimination: WS promises to eliminate duplicate commit request
messages. It treats duplicate copies of the message as requests to resend the reply
message.

WS2: Persistent State Transition: The WS promises that it has proceeded to one of
two possible states, either “committing” or “aborting” and that the resulting state is
persistent. [These states are in quotation marks because there may not be a connec-
tion with any particular transaction.]

WS3: Unique Persistent (Faithful) Reply Message: WS awaits prompting from the
application to resend, accomplished by the application repeating its commit request
message. Once the requested action terminates, the WS replies acknowledging the
commit request, and guarantees persistence of this reply until released from this guar-
antee. The WS promises to resend the message upon explicit request. Message
uniqueness permits an application to detect duplicates.

An important aspect of the WSIC is that it says nothing about how the web service
meets its WSIC obligations. This is unlike the TIC, where the transaction component
is required to have an atomic and isolated action (transaction). Thus, a web service
might meet its requirements using perhaps a persistent application, or a workflow. It
might exploit transactional queues or databases or file systems. This is the other side
of the value of the opaque interaction contract. It does not prescribe how a web ser-
vice meets its obligations, it only describes the obligations. This obligation ensures
that the request to the web service is “idempotent”. Note that the WS action taken,
like a logged database operation, does not need to be idempotent, and in general is
not. It is the web service that provides idempotence, i.e. exactly once execution, by
ensuring that the action is only executed once. We discuss next how an application
can use a WSIC to ensure robust behavior.

3.4 Robust Applications

What the WSIC guarantees, as with the TIC, is that if an application is written as a
persistent component, following the rules for the Pcom in the TIC, then the applica-
tion can be made to survive system crashes. We showed how Pcoms can be made
persistent previously [2, 3, and 4].

The key role that the WSIC plays is to ensure that an interaction can be re-
requested should a failure occur during a web service execution. In this case, the
WSIC ensures that the web service activity is executed exactly once, despite poten-
tially receiving multiple duplicate requests (WS1), that the web service “committed”
state, once reached is persistent (WS2), and that the reply message will not be lost be-
cause it is persistent, and it is unique to ensure that it cannot be mistaken for any other
message (WS3), so that duplicates can be eliminated by the application.

We have argued before that programming using persistent applications is easier
and more natural than programming using stateless applications. A stateful persistent
application need not be arranged into a “string of beads” style, where each “bead” is a

10 D. Lomet

transaction that moves the state from one persistent queue to another. Rather, the ap-
plication is simply written as the application logic demands, with persistence provided
by logging and by the ability to replay crash interrupted executions [3]. And it is this
program logic that can deal with errors, either exercising other execution paths or at
least reporting errors to end users, or both.

4 An Example

4.1 The Application

In this section, we explore ways to implement a web service that satisfy the WSIC.
This will illustrate how the flexibility permitted by an opaque web service can be ex-
ploited for both implementation ease and to enable persistent applications.

Our application is a generic order entry system. We do not describe it in detail.
But it responds to requests about the stock of items it sells, it may permit a user to ac-
cumulate potential purchases in a “shopping cart”. And, finally, when the client (ap-
plication or end user) decides to make a purchase, the “commit request” for this pur-
chase is supported by a web service interaction contract that will guarantee exactly
once execution.

4.2 Using Transactional Message Queues

A “conventional” transaction processing method of implementing our web service
might be to use message queues [1, 7]. When an application makes a request, the web
service enqueues the request on its message queue. This executes as a transaction to
ensure the capture of the request. The application must provide a request id used to
uniquely identify the work item on the queue. The message queue permits only a sin-
gle instance of a request or reply with a given request id.

The request is executed by being dequeued from the message queue, and the order
is entered into the order database, perhaps inventory is checked, etc. When this is
complete, a reply message is enqueued to the message queue. This reply message
may indicate the order status, what the ship date might be, the shipping cost and taxes,
etc. This is the WS2 obligation and part of the WS3 obligation, since both the state
and the message are guaranteed to persist.

The application resubmits its request should a reply not arrive in the expected
time. The web service checks the message queue for the presence of the request. If
not found, the request is enqueued. If it is found, the web service waits for the request
to be processed and the reply entry available. If the reply is already present, it is re-
turned directly to the application. The queue has made the reply durable. The web
service ensures that request and reply are unique so that duplicates are eliminated, sat-
isfying WS1.

Note here that if the application executes within a transaction, as is the case for
traditional transaction processing, and its transaction fails, there is no convenient
place to handle the failure. But here, even when the web service uses conventional

 Robust Web Services via Interaction Contracts 11

queued transaction processing, the application can be a persistent one. When that is
the case, application logic can handle web service failures. The application is indif-
ferent to how the web service provides the WSIC guarantees, only that they are pro-
vided, enabling application persistent.

4.3 Another Approach

We can change the implementation of the web service to provide the WSIC guaran-
tees in a simpler and more efficient manner if the web service has the freedom to
modify database design. We guarantee duplicate elimination, a persistent state transi-
tion and a persistent output message all by adding a request id field to each order in
our order database. We enter an order in the order table using a SQL insert statement.
We define this table with a uniqueness constraint, permitting only one order with the
given request id to be entered.

Should our activity in the web service be interrupted by a system crash, then there
are a number of possible cases.

1. We have no trace of the request because the transaction updating the order table
was not committed prior to the crash. In this case, it is as if we have not seen the
request. A “persistent” application will resend the request.

2. We have committed the transaction that updates the order table. Subsequent du-
plicate requests are detected when we again try to insert an order with the given
request id into the order table. The duplicate is detected, the transaction is by-
passed, and the original reply message is generated again based on the order in-
formation in the table.

The implementation strategy we sketch here avoids the need to have the persistent
message part of the WSIC released explicitly. The idea is that the request id remains
with the order for the entire time that the order is relevant. With the traditional trans-
action processing approach, the release for the persistence guarantee is done with the
commit of a dequeuing operation for the reply on the message queue.

The bottom line here is that the WSIC provides abstract requirements. The web
service can decide how to realize them. Message queues are one way of doing this.
But, as can be seen, there can be other, perhaps more effective, approaches.

4.4 The Web Service Client

Because the WSIC is an abstract, opaque characterization of requirements for a web
service, an application program using the web service can essentially do whatever it
wants, since the WSIC is a unilateral guarantee by the web service. The application
has no obligations under the WSIC.

If the application doesn’t do anything special, the program state will not be per-
sistent across system crashes. But the WSIC guarantees are useful in any case.
With respect to our order entry system example, for instance, it is surely useful for
an end user to be able to ask about an order’s status. And having a persistent state
reflecting the order is usually considered a minimal requirement for business data
processing needs.

12 D. Lomet

If the application wants to realize exactly once semantics for its request, then the
WSIC enables this robustness property to be realized. Not surprisingly, the applica-
tion needs to implement the Pcom side of the transaction interaction contract (TIC).
That is, the application becomes persistent when it assumes the obligations of the per-
sistent component in a TIC.

5 Discussion

A number of additional subjects are worth mentioning briefly.

5.1 Undo Actions for Business Processes

To construct long duration workflows, it is usually a requirement that some form of
compensation action be possible for each forward action of the workflow. To support
this kind of scenario, we can associate with each “action” of a web service a “cancel”
(or undo) action. This says nothing about atomicity. The “cancel” activity can be as
opaque as the original action. It says nothing about the details of the “inverse” action.
But it puts the responsibility for the cancel (or undo) action on the web service,
which, after all is the only autonomous entity really capable of doing it.

One way of dealing with this is to submit the same id used for the commit request
with a cancel request (which itself is a form of “commit request” obeying the TIC ob-
ligations). There may be a charge assessed for this under some circumstances, and
that should be part of the WSDL description of the web service. The response mes-
sage to this cancel request should be something like “Request cancelled”. This is in-
dependent of whether the “forward” request was ever received or executed since once
the request is cancelled, there should be no requirement that the web service remem-
ber the original request.

By supporting a “cancel request”, a web server enables an application to program
a compensation action should the application need to “change plans”. Note that this
says nothing about how the application figures out what needs undoing, etc. Again,
web services are opaque. But by providing a “cancel request”, they enable an appli-
cation to be written that undoes earlier work as appropriate.

There need be no requirement that a web service provide a “cancel request”. But
there is no requirement also, that an application program use any specific web service.
But many e-commerce sites support canceling orders, and many web services should
be willing to support “cancel request”, especially if it were possible to charge for it.

A “cancel” request may only be a best efforts cancellation, e.g. the canceling of an
order to buy or sell shares of stock. If the cancellation fails, then there is an obliga-
tion to faithfully report that failure. In this case, the web service is obligated to main-
tain the original action state so as to be able to generate a persistent “cancellation
failed” message.

5.2 Releasing Contracts

Persistent states and persistent message obligations of the parties to an interaction
contract may require an eventual release. Application programs that exploit the obli-
gations eventually terminate. An order is eventually filled and at that point becomes

 Robust Web Services via Interaction Contracts 13

of historical interest but not of current interest. We have not discussed up to this point
how the contracts might be released. For web services, recall, the obligations are uni-
lateral and apply only to the web service. Any application effort to exploit the WSIC,
e.g. to provide for its persistence, is purely at the its own discretion. Below we dis-
cuss some alternatives for the web service.

No Release Required: This is both very useful and very simple for applications. It
means that no matter how long the application runs, the web service will retain the in-
formation needed to effectively replay the interaction. A variant of this is that, for ex-
ample, once an order is shipped, the shipped object ends the WSIC obligations. So it
is frequently possible to remove information about old orders (old interactions) from
the online system without compromising the WSIC guarantees, and without requiring
anything from the application.

Release Encouraged: In this scenario, when an application releases the web service
from its WSIC obligations, the web service can remove information associated with
the interactions from the online system. If only a small number of apps do not cooper-
ate, that will not be a major issue. Storage is cheap and plentiful. A further step here is
to “strongly” encourage release, e.g. by giving cooperators a small discount. Another
possibility is to eventually deny future service until some old WSIC’s are released.
This distinguishes well-behaved applications from rogues, and eventually limits what
the rogues can do.

Release Required: When web service providers feel that it is too much of a burden
on them to maintain interaction information in their online system, an application can
be required to release the contract. A frequent strategy is to stipulate that the contract
is released at the time of the next contact or the next commit request. If there is no
such additional contact that flows from the application logic, then release can be done
at the time the application terminates (or its session terminates). Of course, stipula-
tions can be ignored. So a further “clause” in the web service persistence guarantee
might “publish” a time limit on the guarantee. For example, one might safely con-
clude that most applications requesting a web service would be complete within four
hours of the commit request having been received, or within one day, etc. This per-
mits “garbage collecting” the information that is older than the published guarantee.

5.3 Optimizations

The existence of web services supporting WSIC’s can frequently enable persistence
for applications more efficiently than can traditional transaction processing. Typi-
cally, with traditional transaction processing, each message exchange is within a sepa-
rate transaction. Input state on a queue and one message are consumed, and the out-
put state is placed on another queue, then the transaction is committed. Thus there are
two log forces per resource manager (message source, input queue, and output queue)
and at least one, perhaps two, for the transaction coordinator.

Using interaction contracts, we have an opportunity to avoid multiple forced log
writes. The application may have several interactions, each with a different web
service. Assuming that contract release is either not required, or occurs on the next in-
teraction, it is not necessary for the application to log each of these interactions

14 D. Lomet

immediately to make them stable, as is done by committing transactions in classic TP.
These interactions are stable via replay, using the sender’s stable message. This re-
sults in many fewer forced log writes. Each web service may require a log force, and
eventually the application will need to force the log, but this can be amortized over
multiple web services. So, “asymptotically, we might have as few as one log force per
method call instead of several.

5.4 Summary

We have shown how robust web based applications can be enabled by web services
that meet the relatively modest requirements for a unilateral web services interaction
contract. The WSIC is an opaque requirement in that it does not specify (or even re-
veal) how it is that the web service satisfies the WSIC. Further, it usually permits ro-
bust, i.e. persistent applications, to be realized at lower cost than traditional transac-
tion processing. Finally, the application can be a stateful one. This has two
advantages: (i) it is a more natural programming style than the “string of beads” style
required by traditional TP; (ii) it enables program logic in the persistent application to
deal with transaction failures, something that is not easily accommodated in tradi-
tional TP.

References

1. P. Bernstein, and E. Newcomer. Principles of Transaction Processing. Morgan
Kaufmann, 1997.

2. R. Barga, S. Chen, D. Lomet. Improving Logging and Recovery Performance in
Phoenix/App, ICDE (March 2004) 486–497.

3. R. Barga, D. Lomet, S. Paparizos, H. Yu, and S. Chandrasekaran. Persistent Applications
via Automatic Recovery. IDEAS (July, 2003) 258–267.

4. R. Barga, D. Lomet, G. Shegalov, and G. Weikum. Recovery Guarantees for Internet
Applications ACM TOIT 4(3) (August, 2004) 289–328.

5. R. Barga, D. Lomet, and G. Weikum. Recovery Guarantees for General Multi-Tier
Applications. ICDE (March 2002) 543–554.

6. E.N. Elnozahy, L. Alvisi, Y. Wang, and D.B. Johnson. A Survey of Rollback-Recovery
Protocols in Message-Passing Systems. ACM Comp. Surv. 34(3), 2002.

7. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann, 1993.

8. Microsoft. Microsoft .Net Framework Developer Center. http://msdn.microsoft.com
/netframework/

9. Oasis. Universal Description, Discovery and Integration of Web Services
http://www.uddi.org/specification.html

10. D. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules. CACM
15(12): (December 1972) 1053–1058.

11. WC3. Web Services Description Language (WSDL) 1.1 http://www.w3.org/TR/wsdl .
12. WC3. Web Services Coordination. 106.ibm.com/developerworks/library/ws-coor/.

When are Two Web Services Compatible?

Lucas Bordeaux, Gwen Salaün, Daniela Berardi, and Massimo Mecella

DIS, Università di Roma “La Sapienza”, Italy ��

lastname@dis.uniroma1.it

Abstract. Whether two web services are compatible depends not only
on static properties like the correct typing of their message parameters,
but also on their dynamic behaviour. Providing a simple description
of the service behaviour based on process-algebraic or automata-based
formalisms can help detecting many subtle incompatibilities in their in-
teraction. Moreover, this compatibility checking can to a large extent be
automated if we define the notion of compatibility in a sufficiently formal
way. Based on a simple behavioural representation, we survey, propose
and compare a number of formal definitions of the compatibility notion,
and we illustrate them on simple examples.

1 Introduction

Performing complex tasks typically requires to make a number of web services
work together. It is therefore necessary to ensure that these services will be
able to interact properly, which calls for a clear understanding of the notion
of compatibility. Compatibility is moreover closely related to another problem,
substitutability : when can one service be replaced by another without introducing
some flaws into the whole system? Ensuring the substitutability of a previously-
used service by a new one is necessary in many situations, for instance, when
the old service comes to be temporarily unreachable, or when a new release
of a service is proposed which provides better functionalities, better Quality of
Service, or has lower cost [AMPP03]. This paper is an attempt to address the
issue of compatibility and to show how this notion can also be used to tackle
substitutability issues.

Incompatibilities between WSs can arise at a number of different levels. For
instance two services can be incompatible because the messages they can send
and receive (as declared, say, in their WSDL interface) have incompatible types.
Such a static compatibility is essential to check, but a more challenging problem
is raised by the very dynamic nature of the WS interaction, which is based on an
exchange of messages which can be ordered in complex sequences. We would like

�� L. Bordeaux and G. Salaün are partially supported by project ASTRO funded by the
Italian Ministry for Research under the FIRB framework (funds for basic research).
D. Berardi and M. Mecella are partially supported by MIUR through the FIRB
project MAIS (http://www.mais-project.it).

M.-C. Shan et al. (Eds.): TES 2004, LNCS 3324, pp. 15–28, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

16 L. Bordeaux et al.

to ensure that, whatever scenario the interaction goes through, undesired situ-
ations (messages not received, impossibility to terminate the interaction, etc.)
will never occur. This requires reasoning on the behavioural features of WSs,
i.e., to describe and examine the possible sequences of messages each of them
can send or receive. Note that other reasons for incompatibility can exist, for
instance semantic incompatibilities (a car-renting service can hardly be consid-
ered compatible with a client which wants to buy music online). The paper shall
focus only on behavioural aspects, assuming that the names of the exchanged
messages are standardised and that semantic compatibility is guaranteed.

The need for WSs to provide a publicly-available interface describing their
behaviour has been recognised by the community, especially for choreography
issues. To give precise definitions of the notions of compatibility and substi-
tutability, and to design and implement automated tools for checking these
properties, it is convenient to abstract away from the XML syntax and to
choose a simple formalism to represent behaviour. Whereas some authors have
used Petri nets [NM02] or process algebra [MB03, SBS04] for instance, we use
here Labelled Transition Systems, which are in a sense a simple model underly-
ing all these richer notations, and which also faithfully correspond to the con-
structs found in proposals for behavioural interfaces like WSCI. This framework
enables us to give a uniform presentation of different notions of compatibil-
ity of behavioural interfaces, inspired in particular from the area of software
components [YS97, BPR02, BBC02, CFP+03], to discuss them and to illustrate
them on simplistic yet easily generalisable examples. For simplicity, we focus on
definitions where only 2 services interact and we discuss the generalisation to
an unbounded number of services in the end of the paper. Recent related work
in the WS literature [BCPV04, MPC01, Mar03, LJ03] was typically informal or
focused on very specific representations, or related to non-behavioural features
(see, e.g., the work based on ontology [AMPP03]). Moreover, a number of dif-
ferent notions emerged in this literature, and our present work is, to the best of
our knowledge, the first attempt to classify them and address the problem in a
systematic way.

The organisation of this paper is as follows. Section 2 introduces the formal
model of WSs we come up with to formalise afterwards the compatibility notion.
Section 3 tackles the notion of compatibility while Section 4 deals with substi-
tutability. We draw up in Section 5 some concluding remarks and perspectives.

2 Our Model for Web Services

The behaviour of a web service will be represented as a Labelled Transition
System (LTS) as illustrated by the (simplistic) service shown in Fig. 1, which
expects to receive a request, and can either send an error message if the requested
product is not available, or send more info on the shipping conditions and wait
for a confirmation/cancellation before terminating the interaction.

More generally, services will be represented by a set S of states (the circles),
transitions between the states (the arrows) and actions (the labels of the arrows)

When are Two Web Services Compatible? 17

shippingInfo!

request? notAvailable!

cancel?

confirm?

Fig. 1. A Labelled Transition System modelling a simple service

which can either be emissions or receptions. Sending a message n is written n!
and receiving it is written n?, and we denote by A the set of actions of the
form n! or n? (where n ranges over a predefined set of message names). The
transitions are specified by a (partial) function t which, given a state s ∈ S and
an action a ∈ A specifies to which new state s′ ∈ S the service moves (we note
t(s, a) = ⊥ when there is no transition labelled by action a going out of state s).
To complete the picture we need to identify the initial state i ∈ S and the set of
final states F ⊆ S (double circles) in which the job that the service has to realize
is considered finished. Since we deal with two services, we use subscripts like S1,
t1, i1 or F1 (resp. S2, etc.) to make explicit that we consider the states, the
transition function, the initial or final states, of service 1 (resp. service 2). Note
that our model is close to other proposals of the literature [BCG+03, BFHS03]
in that:

• the receiver of messages is implicit because we deal with 2 services, messages
are necessarily sent to the partner;

• for the sake of simplicity, we do not represent the data carried by the mes-
sages because we focus on purely behavioural features;

• it is deterministic: one action applied in a given state leads to a completely
determined state.

Note that the terminology is somewhat subtle here: we do have some non-
determinism in that we reflect all possible executions of the represented sys-
tem, and we therefore make implicit use what the process algebra community
would call non-deterministic choice [Mil89]. We are deterministic, though, in
the automata-theoretic sense, which is that no two actions labelled by the same
name can be applied in one given state (i.e., the transition relation is indeed a
function). It makes little sense in practice, starting from some particular state
s, to say that a particular action (say, the reception of message “confirm”) will
lead our service either to state s1 or to state s2. Such a modelling could be
“determinised” using classical methods from automata theory. If needed how-
ever, our model and definitions could in any case easily be generalised to the
non-deterministic case.

Determining compatibility and substitutability of services requires to reason
on the possible scenarios which their interaction can go through. We therefore

18 L. Bordeaux et al.

define formal material to model the sequence of messages which can be sent
by one service and received by the other. These definitions correspond to a
synchronous two-party communication model. It makes sense in some contexts
to use asynchronous communications instead (at the price of much more severe
difficulties in the definitions and verification algorithms), but the synchronous
communication model is normally exploited in current WS technology, see for
instance choreography description languages. The differences which arise when
we consider an asynchronous model are briefly illustrated in section 5.

2.1 Reasoning on Possible Scenarios

A (finite) sequence of actions is written using a list notation [m1; m2; . . .], where
each mi ∈ A. In particular, [] represents the empty list. We use the notation
s

l→ s′ to express the fact that, starting from state s, the considered ser-
vice can perform the sequence of actions specified by the list l, which leads
it to state s′.1

When a service sends (resp. receives) message m, this means that the other
service simultaneously evolves by receiving it (resp. sending it). We use the no-
tation m to represent the opposite action of action m, i.e., we define n? as n! and
n! as n?. We generalise this notation to sequences, defining the list [m1; m2; . . .]
as [m1; m2; . . .]. The valid scenarios which may occur can therefore be defined
as follows: service 1 (which starts from the initial state i1) can perform the se-
quence of actions l = [m1; m2; . . .] and reach state s1, if and only if service 2 can
perform the sequence of actions l leading to some valid state s2. In other words,
a sequence l is a valid sequence of actions for service 1 iff we have:

i1
l→ s1 and i2

l→ s2

A pair of states 〈s1, s2〉 for which there exists such a valid sequence of actions
l is called a reachable pair of states. Reachable pairs of states are important when
reasoning on behavioural issues since they represent the possible configurations
the system can reach in every possible scenario of interaction.

One last thing we need is to reason on the set of messages which can be sent
and received by a service in a particular state, hence it is useful to define:

• emissionsi(s) as the set containing the names of the messages which service
i can send when it is in state s, i.e., {n | ti(s, n!) �= ⊥};

• receptionsi(s) as the set containing the names of the messages which service
i can receive when it is in state s, i.e., {n | ti(s, n?) �= ⊥}.

1 Formally, predicate s
l→ s′ is defined by:

s
[]−→ s and s

[m1;m2;...]−→ s′′ iff t(s, m1) = s′ and s′ [m2;...]−→ s′′.

When are Two Web Services Compatible? 19

3 Notions of Compatibility

From a behavioural viewpoint, intuition suggests that “two services are com-
patible if they can interact properly”. In the following we describe 3 possible
definitions of this informal notion.

3.1 Opposite Behaviours

The first notion of compatibility, and perhaps the most natural to start with, is
that of opposite behaviours. It is based on the observation that, when a service
emits something, the other should receive it, so in a sense the behaviour of service
2 should be the same as service 1, but with receptions instead of emissions, and
vice-versa.

Defining the opposite behaviour A of a service A as the service obtained
when the emissions are changed to receptions and vice-versa (i.e., the transition
function t of A is defined by: t(s, m!) = t(s, m?) and t(s, m?) = t(s, m!)), we
have the following notion:

Definition of Compatibility 1. Two services A and B are compatible if they
have opposite behaviours, i.e., A is equivalent to B.

The relation is symmetric: A is equivalent to B if B is equivalent to A for
any decent relation of equivalence2. But what do we mean by two services being
equivalent? There are a number of notions of equivalence between processes or
labelled transition systems but, since we are in a simple, deterministic case, the
most important of these notions (like bisimulation and trace equivalence [Mil89])
are actually equivalent to the following, simplified definition:

Definition 1. [Observational indistinguishability] Service 1 in state s1 is
observationally indistinguishable from service 2 in state s2 if:

• either the two states are initial (resp. final) or none of them is, and
• the same messages can be sent and received in both states and if they lead to

states which are observationally indistinguishable:
• t1(s1, m) = t2(s2, m), and
• if t1(s1, m) �= ⊥ then t1(s1, m) is indistinguishable from t2(s2, m).

The two services are indistinguishable if they are indistinguishable in their initial
states.

Just to show that this concept is slightly more subtle than having “identical
drawings”, the example above shows two indistinguishable services. When inter-
acting with either service starting from its initial state, it is clearly not possible
for an external observer to distinguish between the two of them.

2 If A ≡ B then A ≡ B = B, the only assumptions are that relation ≡ be symmetric
and compatible with negation, i.e., that A ≡ B implies A ≡ B.

20 L. Bordeaux et al.

order! info! reply?
order! info!

reply? reply?

Using this definition of process equivalence, it is interesting to have a look
at the set of messages the two services can send and emit. If, in some reachable
pair of states, the set of messages one service can emit does not exactly match
the set of messages the other can receive, then they can easily be shown to be
incompatible. This necessary condition for compatibility also turns out to be
sufficient, and we therefore have the alternative way of characterising our first
compatibility notion:

Remark 1. Two services are compatible in the sense of Def. 1 if, for any reachable
pair of states 〈s1, s2〉, we have:

emissions1(s1) = receptions2(s2)
and emissions2(s2) = receptions1(s1)

order! order?

acknowledge? acknowledge!

BA

Fig. 2. Two services compatible in the
sense of Def. 1: the emissions by one
service match exactly the receptions of
the other

3.2 Unspecified Receptions

Definition 1 can be seen as too restrictive in some situations [BZ83, YS97]. When
two services meet on the web, they may be able to cooperate in a satisfacto-
rily way even when one has slots for receptions which the other one does not
intend to use. Consider for instance a service which can receive requests for
many types of products and is ready to receive a number of messages including
show top10 CD sells, search book title, goto my account, etc. Such services typ-
ically provide more than a particular client service really needs, and it makes
sense to make them cooperate with a client which can only send a subset of these
requests. Compatibility here means that the client will not send requests which
the seller cannot satisfy. Of course, the situation is symmetric and it is desired
that the client also be ready to accept all the messages sent by the seller—in
other words, we want the whole system to have no unspecified reception:

Definition of Compatibility 2. Two web services are compatible if they have no
unspecified reception i.e., if, for any reachable pair of states 〈s1, s2〉, we have that:

When are Two Web Services Compatible? 21

emissions1(s1) ⊆ receptions2(s2)
and emissions2(s2) ⊆ receptions1(s1)

Intuitively, the absence of unspecified receptions gives indication that no mes-
sage will ever be sent whose reception has not been anticipated in the design
of the other service. It is immediate to see that this relation is symmetric and
that, in particular, a service A is compatible with the service A w.r.t. this defi-
nition (or to any service indistinguishable from it). This shows that two services
compatible in the sense of Def. 1 are also compatible in the sense of Def. 2.

order! order?

search?

ack? ack!

BA

Fig. 3. Two services compatible in the
sense of Def. 2 (but not compatible ac-
cording to Def. 1): each service is ready
to receive at least all the messages that
its mate can choose to send, and possi-
bly more

3.3 Deadlock-Freeness

The two previous definitions have one drawback: they do not consider the ques-
tion of whether the interaction will reach a final state. In particular, our defi-
nitions consider that two services which do not send any message and just do
receptions are compatible3.

Definition 2. [deadlock] A reachable pair of states 〈s1, s2〉 is a deadlock if it
is impossible from these states to reach a final state.

The interaction between two services is deadlock-free if no reachable state is
a deadlock.

Although a transversal issue, it typically makes sense, when we check the
compatibility of two services, to ensure that the resulting application is also
deadlock-free. We can therefore use variants of the previous definitions of com-
patibility where we ensure at the same time the absence of incompatibility (i.e.,
we guarantee that the service have opposite behaviours or that they have no un-
specified reception), and the additional property that terminating the interaction
will be possible at any step of the communication.

The notion of deadlock by itself allows to define a third notion of compati-
bility:

Definition of Compatibility 3. Two services are compatible if the initial state
is not a deadlock, i.e., if there is at least one execution leading to a pair of final
states.

3 This is in a sense perfectly satisfactory: behavioural compatibility is but one among
many things one would like to ensure regarding a service-based application; two
services may very well be compatible and yet incorrect w.r.t. deadlock-freeness or
any other correctness criterion.

22 L. Bordeaux et al.

In other words, we just have to check that one pair of final states belongs to
the reachable pairs. This notion guarantees that there is at least one way for the
two services to interact in a satisfactory way, leading to a final state.

order!

alarm!

order?

search?

ack?

ack!

A B

Fig. 4. Two services compatible in the
sense of Def. 3 (but not compatible ac-
cording to Def. 1 & 2): there is at least
one possible way of using the two ser-
vices: the emission of message “order”
by the first one will correctly be re-
ceived by the second, and if the sec-
ond one acknowledges, the execution
can successfully terminate

4 Substitutability

An interesting question closely related to compatibility is substitutability : when
can we replace a service A by another service A′? In our opinion, the notion can
be defined more formally in at least two ways, one application-dependent and
one application-independent.

4.1 Context-Dependent Substitutability

The first definition is based on the assumption that we have 2 services and that
we remove the first one and replace it by some other service. Substitutability
consists of checking whether the substitute is still compatible with the other
service which the original service was communicating with.

Definition of Substitutability 1. In a particular application made of two com-
patible services A and B, service A′ can substitute service A if A′ is also com-
patible with B.

We therefore have 3 definitions of substitutability, depending on which one
amongst the three notions of compatibility we choose. Note that in this definition
we have to test the compatibility of the substitute A′ with B, independently of
what the original service A looked like. One natural question is, can we tell by
just having a look at A?

The answer is no if we use the definitions 2 or 3 of compatibility: there is
no way of determining whether “service A′ is a substitute of A in the inter-
action with B” by just having a look at A. Contrary to the first definition of
compatibility, the only way is to check the compatibility with B.

On the contrary, the answer is yes in the case of the first definition of com-
patibility: if A and B have opposite behaviours and we want A′ to also be com-
patible with B according to this definition, then A′ has to be observationally
indistinguishable from A:

Remark 2. With the first notion of compatibility, a service can substitute an-
other one iff they are indistinguishable (as defined before).

When are Two Web Services Compatible? 23

But now it is interesting to note that this definition is independent of B.
In other words, if we can substitute A by A′, the substitute can be used with
any service B which could interact with A. This gives the idea of the context-
independent notion of substitutability developed next.

4.2 Context-Independent Substitutability

As suggested in the last section, we can define a context-independent notion of
substitutability as follows:

Definition of Substitutability 2. A service A′ can substitute a service A if it
is compatible with any service B which is compatible with A.

This notion of substitutability is helpful, for instance, when we want to re-
place a service by an updated version which shall be used by many different
other services met on the web – i.e., we do not have in advance any information
about the services with which we are going to interact. It makes sense to guar-
antee that the substitute will be able to communicate properly with any service
which could work with the original one.

We mentioned in the previous subsection a particular case of this notion of
substitutability: if we replace a service A by a service A′ which is equivalent
(indistinguishable), the substitute will be able to work properly with any ser-
vice B which could work with A. This defines a notion of context-independent
substitutability which corresponds to the first notion of compatibility.

There is no way of using the 3rd notion of compatibility to define a context-
independent substitutability: to know that it is possible for service A′ to com-
municate with B in at least one way, we need to fix some particular B. On the
contrary, a context-independent substitutability based on definition 2 is possible.
To see how, let us consider the following two services:

A

error!request?

reply!

acknowledge?

A′
reply!

acknowledge?

here!

ping?

request?

Service A′ turns out to be compatible with any service which is compatible
with service A according to Def. 2. The reason is that service A′ performs less
emissions and more receptions, so it can properly handle any message that A
was designed to receive, and there is no risk of unspecified receptions appearing
because of A′ sending messages whose reception has not been anticipated in
the design of its interlocutor. Intuitively, this corresponds to the case where we
have updated service A by adding functionalities: the service can now receive a
new type of queries (“ping”), but services which do not use this functionality

24 L. Bordeaux et al.

can still be interact with A′. Service A could also occasionally send an error
message which is not needed anymore; the users of service A therefore had a
slot for the reception of this message which will not be used, but none of these
modifications is a source of incompatibility according to Def. 2. We can define
this context-independent substitutability as follows:

Remark 3. With regards to the second notion of compatibility, a service 1 can
substitute a service 2 if for any sequence of actions l that is performable in both
cases, i.e., such that:

i1
l→ s1 and i2

l→ s2

we have:
emissions1(s1) ⊆ emissions2(s2)

and receptions1(s1) ⊇ receptions2(s2)

This defines a partial ordering. The relation “service 1 is a substitute for
service 2” is, in particular, transitive: if we can substitute A by B and B by C,
we can also substitute A by C with no problem.

Once again, this definition guarantees that replacing a service by another one
will not introduce new unspecified receptions, but does not say anything w.r.t.
other kinds of flaws. It is interesting for instance to wonder whether this notion
of substitutability preserves deadlock-freeness. This is not the case, as shown by
the following example:

ack?

A’

Consider the example of Fig. 2 (section 3.2) where we
had two compatible services A and B. A′ can substitute
A without introducing unspecified receptions. But the
interaction of A′ and B cannot reach a final state — we
have a deadlock, which was not the case with service A.

The reason for this drawback is that we allow the substitute service to do
less emissions, while some of these emissions may be needed for the interaction
to progress. If we replace the condition in the last definition by:

emissions1(s1) = emissions2(s2)
and receptions1(s1) = receptions2(s2)

i.e., if we use a definition of substitutability adapted from our first notion of
compatibility, we have a more restrictive notion of substitutability which guar-
antees two things: 1) the substitute is deadlock-free w.r.t. any mate which can
work in a deadlock-free manner with the original service; 2) using the substitute
does not introduce unspecified receptions.

When are Two Web Services Compatible? 25

5 Final Remarks and Future Work

A natural question emerging from our work is whether one notion of compat-
ibility should be preferred. This depends on the problem at hand, and we did
not provide a black and white answer. Instead, we have tried to compare the
different possibilities and to explain to which situations each applies. In many
cases we want two services to work together without unspecified receptions and
without deadlock, in which case we can use definition 2 with an additional test
for deadlock-freeness to guarantee that the two services will communicate suc-
cessfully. If a stricter matching of the behaviours is desired, definition 1 should
be considered, and if what is needed is simply to see whether an interaction shall
be possible, one can use definition 3.

5.1 Variants of the Model

One could consider a number of variants of our model for behaviour representa-
tion on which we have based our definitions. In particular, and essentially for the
sake of simplicity, we have discussed the questions of compatibility of 2 services,
but some definitions can be generalised to situations where an arbitrary number
of services interact. This is the case for the notions of deadlock-freeness and of
unspecified receptions; it is a bit less clear how the first definition of compati-
bility can be generalised to more than two services (a service needs to be the
opposite of the composition of the other services). We also point out the two
interesting variants of our model:

Models with Internal and External Non-determinism: Non-determinism
in our framework is modelled by the possibility to have several transitions
leaving from the same state. We did not distinguish between the two reasons
which may lead to such a multiple choice: in some cases, a choice occurs
because the service which is considered proposes its partners a number of
alternatives among which they can pick freely. This typically occurs when a
service is in a state where it is waiting for one among several possible recep-
tions; for instance, a book-selling service can in some state wait for either
a buy message or for new search. On the other hand, choices can also oc-
cur because the service itself has to choose among several alternatives. This
typically occurs in states where several emissions are possible; for instance
at some point a bookselling service can either send a not available or a pro-
ceed order message. What is modelled here is the “choice” of the bookseller
in that it depends on computation it performs internally.

Finer-grained models have been proposed which reflect the distinction
between these two sources of non-determinism, which are respectively called
external and internal (see [RR02] for such a work, which discusses a notion
of conformance related to our substitutability and a notion of stuck-freeness
related to the absence of unspecified receptions). The distinction between
the two is important because it makes explicit who has the choice and who
should consider all the possible choices of the other. It is important for a

26 L. Bordeaux et al.

book buyer, for instance, to know that the choice between not available and
proceed is not his.

In most realistic service-based applications though, internal choice appears
in our opinion to be synonym of emissions, while external choice is synonym
of receptions. We have therefore chosen to base our definitions on the no-
tions of emissions and receptions instead of adding two notations for non-
determinism. Such a notation could be helpful, anyway, if we were to model
situations where a number of receptions and emissions are both possible in
the same state. Also note that internal non-determinism can alternatively be
be represented in some frameworks using silent actions (ε-transitions, also
called “τ actions” in the process algebra literature [Mil89]), which model the
fact that a service can at some point silently move to a new state because of
internal computations. This provides an alternative way of having both inter-
nal and external non-determinism when describing a behaviour.

Models with Asynchronous Communication: Reasoning on asynchronous
communications raises very subtle problems which we exemplify by the fol-
lowing web services (this example is similar to one exposed in [BZ83]):

alarm?

ack?

request! request? alarm!

ack!handle! handle?

A B

If we assume that communication be instantaneous, these two services are
perfectly compatible according to every definition we have considered. Now
if we consider that messages can be sent asynchronously, a subtle problem
can arise: it may happen that service A emits the request and that service
B decides to emit the alarm (of which we can think as a timeout sent when
service B did not receive any request) before the request arrives to it. The
problem is that service A does not expect to receive an alarm signal after
having sent its request: this should not occur if we assume synchronous
communication, but it might happen if message transmission takes time.

Reasoning on asynchronous communications is unfortunately very often
undecidable [BZ83], which means that automated tools are submitted to
severe restrictions. Model-checkers like SPIN can verify properties of asyn-
chronous systems in which the transmission delay can be bounded.

5.2 Open Questions and Perspectives

A number of questions are left open and will be considered for future work:

Algorithmic Questions: We did not give the details of the algorithms, but it
should be clear that it can be determined automatically whether two services
are compatible or if one can substitute another.

When are Two Web Services Compatible? 27

Moreover, existing tools developed in the Formal Methods community can
be reused. The equivalence between processes can be tested by the bisim-
ulation checkers implemented in many tools based on Process Algebra (the
CADP4 toolbox for the LOTOS language for instance), and the absence of
deadlock can be verified using any model-checker. Algorithms to check the
absence of unspecified receptions are implemented, for instance, in SPIN5.

Furthermore, it is important to note that, in the particular framework we
have considered, these algorithms provide guarantees in terms of efficiency :
if we have two services, the runtime of these algorithms is polynomial in
the size of the two XML or abstract interfaces. We think this is an impor-
tant prerequisite if we consider services meeting on the web which have to
dynamically test their compatibility – most verification algorithms have an
at least exponential complexity which severely restricts their wide-scale and
fully automated use.

More Sophisticated Notions of Compatibility and Substitutability: In
case two services are not compatible, it is natural to try to “do something” to
correct the flaws in their interaction. Several authors have investigated the pos-
sibility of automatically creating a patch, or adaptator in order to restore the
compatibility.This patch typically consists in an intermediate behaviourwhich
is put between the two services and correct the flaws between their interaction.

This is one of the many possible variants which can be considered to en-
rich the basic framework we have considered here. Once again, in our opinion,
one element which should be taken into account in the computational fea-
sibility of such methods. Typically, the cost of checking these sophisticated
notions of compatibility is exponential, which can restrict their applicability
to industrial applications.

References

[AMPP03] V. De Antonellis, M. Melchiori, B. Pernici, and P. Plebani. A methodology
for e-service substitutability in a virtual district environment. In Proc.
of Conf. on Advanced Information Systems Engineering (CAISE), pages
552–567. Springer, 2003.

[BBC02] A. Bracciali, A. Brogi, and C. Canal. Dynamically adapting the behaviour
of software components. In Proc. of Conf. on Coordination Models and
Languages (COORDINATION), pages 88–95. Springer, 2002.

[BCG+03] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella.
Automatic composition of e-services that export their behavior. In Proc.
of Int. Conf. on Service-Oriented Computing (ICSOC’03), pages 43–58.
Springer, 2003.

[BCPV04] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing web services
choreographies. In Proc. of workshop on Web Services and Formal Methods
(WS-FM), 2004.

4 http://www.inrialpes.fr/vasy/cadp/
5 http://spinroot.com

28 L. Bordeaux et al.

[BFHS03] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: a new
approach to the design and analysis of E-service composition. In Proc. of
World Wide Web Conference (WWW), pages 403–410. ACM Press, 2003.

[BPR02] A. Brogi, E. Pimentel, and A. M. Roldán. Compatibility of Linda-based
component interfaces. In Proc. of workshop on Formal Methods and Com-
ponent Interaction (FMCI), volume 66(4) of Elec. Notes on Theor. Comput.
Science, 2002.

[BZ83] D. Brand and P. Zafiropulo. On communicating finite-state machines. J.
of the ACM, 30(2):323–342, 1983.

[CFP+03] C. Canal, L. Fuentes, E. Pimentel, J. M. Troya, and A. Vallecillo. Adding
roles to CORBA objects. IEEE Transactions on Software Engineering,
29(8):242–260, 2003.

[LJ03] Y. Li and H. V. Jagadish. Compatibility determination in web services. In
Proc. of ICEC eGovernment Services WS, 2003.

[Mar03] A. Martens. On compatibility of web services. Petri Net Newsletter, 65,
2003.

[MB03] G. Meredith and S. Bjorg. Contracts and types. Communications of the
ACM, 46(10):41–47, 2003.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[MPC01] M. Mecella, B. Pernici, and P. Craca. Compatibility of e-services in a coop-

erative multi-platform environment. In Proc. of VLDB satellite workshop
on Technologies for E-Services (TES), pages 44–57. Springer, 2001.

[NM02] S. Narayanan and S. McIlraith. Simulation, verification and automated
composition of web services. In Proc. of World Wide Web Conference
(WWW), pages 77–88. ACM Press, 2002.

[RR02] S. K. Rajamani. and J. Rehof. Conformance checking for models of asyn-
chronous message passing software. In Proc. of Conf. on Computer Aided
Verification (CAV), pages 166–179. Springer, 2002.

[SBS04] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and reasoning on
web services using process algebra. In Proc. of Int. Conf. on Web Services
(ICWS), pages 43–51. IEEE Computer Society Press, 2004.

[YS97] D. Yellin and R. Strom. Protocol specifications and component adaptors.
ACM Transactions on Programming Languages and Systems, 19(2):292–
333, 1997.

Negotiation Support for Web Service Selection

Marco Comuzzi and Barbara Pernici

Dipartimento di Elettronica e Informazione-Politecnico di Milano,
Piazza Leonardo da Vinci 32 I-20133 Milano, Italy

comuzzi@elet.polimi.it, barbara.pernici@polimi.it

Abstract. In the literature, the problem of negotiating the character-
istics of a web service has been addressed only from the point of view
of the characterization of negotiation protocols, without considering the
problem of coordinating the services that participate in the negotiation
process. We propose a framework for the coordination of different ser-
vices for web service negotiation during web service selection. We also
discuss the representation of negotiation in process specification and its
enactment.

1 Introduction

Negotiation is the most natural and flexible way to set the QoS parameters
values of a service and its price. Negotiation has been studied since the 50s and
the growth of internet technologies in the last ten years has shifted the interests
of the academic community towards automated negotiation and the study of
best-suited protocols for automating the negotiation process. The first objective
of this field of research was to develop applications with which the user could
interact to participate in online negotiations, major results in this field have been
clinched in the development of online auctions web sites. The next step has been
to develop software agents that can negotiate autonomously. Research in this
field has taken three different perspectives: game theory [18], classical software
agents, and machine learning agents [23]. While game theory is interested in
studying the outcomes of different kinds of negotiation, without focusing on
the protocol itself, many frameworks have been proposed for different kinds of
automated agent-based negotiation, such as auction-based [21], trade-off based
[20] and argumentation based models [22].

The problem of negotiating the characteristics of a service in a dynamic and
loosely coupled environment in a generic Service Oriented Architecture (SOA,
[5]) is becoming an emerging problem in the web service research field. Recent
solutions tried to specify negotiation protocols and messages to be adopted in the
matchmaking process of web services provisioning using ad-hoc XML-based lan-
guages, like [12], or consolidated proposals, like BPEL4WS [9], without consid-
ering the problem of negotiation as a problem of coordination and orchestration
of different services.

M.-C. Shan et al. (Eds.): TES 2004, LNCS 3324, pp. 29–38, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

30 M. Comuzzi and B. Pernici

We propose a framework for negotiation using a coordinator exploiting the
service oriented architecture of the MAIS (Multichannel Adaptive Information
Systems)1 project for the description of service provisioning ([17], [2], [15]).

The paper is structured as follows: in Section 2 we introduce the reference
architecture; Section 3 discusses coordination problems involved in service nego-
tiation; Section 4 presents an example of negotiation protocol specification and
Section 5 concludes the paper.

2 The MAIS Architecture

The MAIS architecture for service provisioning is reported in Figure 1. Web
services are registered in the MAIS registry, an enhanced UDDI registry, which
provides functionalities of service discovery specialized by ontology-based de-
scriptions, and are invoked by a Concrete Service Invocator [2].

In the MAIS framework, abstract and concrete services are considered [1]: an
abstract service is characterized only by the abstract part of WSDL specifica-
tion (type, messages, operation and portType elements); a concrete service is a
binding of the abstract definition to a specific endpoint and a specific communi-
cation protocol to invoke the service, for example sending SOAP messages over
HTTP. The invocation of a service could be requested directly by the user or
by the orchestration engine that implements the orchestration schema defined
by the designer for the process at the abstract service level and specified using
BPEL4WS. Given an invocation, the Concrete Service Invocator is responsible
of finding a concrete service that implements the abstract specification. The co-
ordinator role is essential when alternative services have to be evaluated before
invocation, and negotiation mechanisms have to be appropriately selected.

3 Coordination for the Negotiation of a Single Concrete
Service

Establishing a negotiation between services involves many aspects, like contact-
ing negotiating parties or results notification, that can be considered typical
problems of service coordination. Dealing with web services the problem of co-
ordination in a dynamic environment has been tackled from two sides [1], hor-
izontal and vertical coordination. In our context, the problem of managing the
negotiation is seen as a problem of coordination of different services. Thus, the
different notions of coordination have to be adapted to our negotiation context:

– Horizontal Coordination: it manages negotiation and it involves contact-
ing negotiating parties, message brokering and negotiation results notifica-
tion to parties and to the service invocator in order to invoke the right service
with the right quality attributes established by the negotiation process. This
form of coordination is called horizontal because it is common to the entire
set of negotiation protocols the architecture is able to deal with;

1 The project web site is available at http://www.mais-project.it

Negotiation Support for Web Service Selection 31

Fig. 1. The MAIS architecture for service provisioning

– Vertical Coordination: is the problem of specifying web services compli-
ant descriptions of negotiating protocols and messages exchanged between
parties that the platform is able to support. Examples found in literature,
like [12], describe only this aspect of negotiation when dealing with web
services architectures.

Besides the characterization of coordination, we describe a negotiation frame-
work for concrete service invocation and how to refer to it while describing a
process at abstract services level with BPEL4WS. Our effort is to use, where
available, existing standards and specifications, without trying to introduce new
languages every time we are facing problems in dealing with negotiation issues.

In our scenario, services can register on the MAIS registry by publishing,
besides other information, the negotiation protocols supported. For example,
many users publish on the registry different theater tickets booking services
that are able to participate in an English auction for last minute tickets sold by
a theater ticket service. When the theater ticket service is offering last-minute
ticket, users can specify that their published services for ticket booking will
participate in the auction. The Negotiator module of Figure 1 is responsible
of implementing and managing the auction between the theater ticket service
and users’ services and of notifying results to auction participants and to the
concrete service invocator that will invoke the theater ticket service in order to
buy tickets for the participant who won the auction at the price established by
the negotiation.

32 M. Comuzzi and B. Pernici

Following the scenario, we can identify three phases in the service negotiation:

1. Matchmaking: discovering services that will be involved in the negotiation
process;

2. Negotiation: horizontal coordination of services involved in the negotia-
tion process and vertical coordination referred to a particular negotiation
protocol, i.e., auction, bilateral or multiparty negotiation;

3. Results Notification: to negotiation participants and to the service invo-
cator.

3.1 Matchmaking for Negotiation

In order to be discovered by the service invocator when a negotiation process
is needed or requested, services have to publish information about their ne-
gotiation capabilities. Policies are the most natural way to represent services’
requirements, features or capabilities and, thus, we do not think that services
have to implement a particular portType for every protocol supported, but sup-
ported negotiation protocols will be described as policies attached to the service,
by means of WS-Policy [6]. Every policy will refer to a particular service that is
responsible of handling different negotiation protocols (handler services).

Thus, policies defined in a service specification associate a service with a han-
dler of different negotiation protocols that exports a portType for every protocol
supported. The definition of a single policy is based on a schema of the informa-
tion needed to describe negotiation protocols. An English auction protocol, for
instance, is described by the maximum and minimum number of participants,
the maximum and minimum length of the auction and the schema of messages
used to post an offer in the auction. Figure 2 describes the elements required
for matchmaking in a web service environment when negotiation capabilities are
considered.

Fig. 2. Matchmaking for service selection

Negotiation Support for Web Service Selection 33

3.2 Horizontal and Vertical Coordination for Negotiation

In describing phase 2 we are facing with the situation where the service invoca-
tor has discovered all the services that will participate in the negotiation process
(i.e., the participants), and it has forwarded this information to the Negotia-
tor with a reference to the negotiation protocol that has to be followed in the
negotiation process. The Negotiator acts as the unique coordinator of services
discovered and the coordination is described by means of WS-Coordination [8].
The UML sequence diagram of Figure 3 shows messages exchanged in the hori-
zontal coordination phase.

The Negotiator “activates” services by sending to everyone involved a co-
ordination context. The coordination context is a data structure that contains
the reference to the coordinator’s RegistrationPortType and information about
the protocol that will be used in the negotiation process. Nevertheless, the co-
ordination context is used to mark messages belonging to the same conversation
(i.e., negotiation process) because the Negotiator can be coordinating, at the
same time, different negotiations, for example an auction for theater tickets and
a direct negotiation of a user for purchasing a flight ticket.

After receiving the coordination context, each service registers to the coor-
dinator specifying his role in the conversation and the portType that exports
the conversation operations; the coordinator replies with a reference to the port-
Type that exports the conversation coordination operations. For instance, in
the auction scenario, after receiving the coordination context, every service in-
volved will register to the Negotiator specifying a portType, i.e., AuctionPartic-
ipantPortType for a participant. The Negotiator replies with a reference to his
AuctionCoordinatorPortType that manages the auction protocol.

The activation and registration phases refer to the horizontal coordination
of the negotiation protocol. The next step, in fact, is the exchange of protocol
specific messages, i.e., offers in the auction by services involved. In the manage-
ment of the protocol specific interactions between handler services the Negotiator
assumes two roles:

Fig. 3. Coordination for service selection

34 M. Comuzzi and B. Pernici

Fig. 4. PortType exported by the handler and the Negotiator

– Negotiation Broker: referring to horizontal coordination, the Negotiator
delivers protocol specific messages to proper receivers and notifies negotia-
tion results;

– Protocol-compliance checker: the Negotiator checks if conversations be-
tween services are compliant to the protocol specified in the coordination
context; in an English auction, for instance, a participant is not allowed to
post two consequent bids.

The description of each negotiation protocol and, thus, of the structure of
the messages exchanged in each protocol supported could be made using the
proposal of WS-Negotiation [12] or extending the constructs provided by WS-
Transaction [7]. The Negotiator, see Figure 4, exports a different portType for
every negotiation protocol supported (i.e., different kinds of auctions, bilateral or
multiparty negotiation) and each service that will handle the negotiation exports
at least a single portType for the negotiation protocol specified in the policy of
the correspondent service.

3.3 Results Notification

After the exchange of protocol specific messages, the process turns again to
horizontal coordination: results notification, to services involved and the Con-
crete Service Invocator, is the last set of interaction common to the entire set
of negotiation protocols supported by the platform. Notified by the Negotiator,
the service invocator is responsible of invoking a particular service with quality
attributes defined by the outcomes of the negotiation process just terminated.

4 An Example of Protocol Definition

In order to act as a protocol-compliance checker, the Negotiator needs a web
service compliant definition of negotiation protocols supported by the platform.
The Negotiator uses this meta-definition to define the rules of the protocols and
to define fault handlers for managing exception generated by a non compliant

Negotiation Support for Web Service Selection 35

behaviour of services involved. Since all the executable process specifications in
the MAIS framework are made using BPEL4WS, we chose it for the definition
of meta-protocols for negotiation.

The following example is related to the definition of an English auction ne-
gotiation protocol. A timeout is associated with the auction, services involved
can place bids until the timeout expires, the highest bid wins the auction; a bid
is described by a sender id and an amount that he wants to pay. The Negotiator
receives offers and notify results to the participants and to the service invocator.
The compliance rule that the Negotiator has to check every time a new offer is
submitted is that one service is not allowed to post two consequent offers. When,
in fact, the last bidder is the same as the current bidder, the Negotiator throws
an exception to signal the a non compliant behaviour; the exception handler, in
this case, will be the refusal of the bid submitted.

<process name="auctionMetaSpec"
...

<partnerLinks>
<partnerLink name="buying"/>

</partnerLinks>
<variables>

<variable name="lastBidder" type="xsd:string"/>
<variable name="currBidder" type="xsd:string"/>
<variable name="tmpSender" type="xsd:string"/>
<variable name="tmpAmount" type="xsd:string"/>
<variable name="winnerAmount" type="xsd:string"/>
<variable name="winnerID" type="xsd:string"/>

...
</variables>
<faultHandlers>
...
</faultHandlers>
<sequence>
<while condition="t < TIMEOUT">
<receive partnerLink="bidder"
portType = "bidPT"
operation = "sendBid"
variable = "offer"

</receive>
<assign>
<copy>

<from variable="offer" part="sender"/>
<to variable="currBidder"/>

</copy>
</assign>
<switch>
<case condition="lastBidder=currBidder">

<throw faultName="invalidBid" faltVariable="..."/>
</case>
</switch>
<assign>
<copy>

<from variable="offer" part="sender"/>
<to variable="tmpSender"/>

</copy>
<copy>

<from variable="offer" part="amount"/>
<to variable="tmpAmount"/>

</copy>
</assign>
<switch>
<case condition="tmpAmount>winAmount">

<assign>

36 M. Comuzzi and B. Pernici

<copy>
<from variable=tmpSender/>
<to variable="winnerID"/>
</copy>
<copy>
<from variable="tmpAmount"/>
<to variable="winnerAmount"/>

</copy>
</assign>
</case>
</switch>
<assign>
<copy>

<from variable="offer" part="sender"/>
<to variable="lastBidder"/>

</copy>
</assign>

</while>
...results notification...

</sequence>
</process>

The process specified in the example is considered a meta-protocol because
it does not refer to a particular abstract or concrete service. Roles in the ne-
gotiation protocol are specified only by names in the partnerLinks element, the
Negotiator obtains a specification of the actual negotiation protocol enriching
the meta-specification with the information provided by participants in the hor-
izontal coordination phase. This mechanisms is similar to the already considered
difference between abstract services and concrete implementations: in the meta
specification partnerLinks are defined only from an abstract point of view, the
coordination context gives a concrete binding to actual services involved in the
negotiation process.The bidPT portType, for instance, will be every time substi-
tuted by the protocol specific interaction portType of the service that is placing
the current bid.

5 Concluding Remarks and Future Work

In this paper we described a framework for managing negotiation in web service
selection. The problem has been considered at the level of concrete service invo-
cation and in the design of a process that involves the orchestration of different
services. Future work will concern with the definition of languages for the spec-
ification of service coordination, the definition of different negotiation protocols
and the specification of the need for negotiation in the process description.

The need for establishing web service parameters (e.g. [15]) for invocation
using negotiation, in fact, is not only addressed by the problem of a concrete
service invocation. The designer of the MAIS architecture of Figure 1 is respon-
sible of designing process that will involve the orchestration of different services
published on the registry. The process is always specified at abstract service
level in a BPEL4WS file [2]. The process orchestration engine and the concrete
service invocator will have to discover concrete services in the registry that will
implement an instance of the process.

In this contest, we want to propose an extension to BPEL4WS to include the
need for specification of the negotiation of service quality parameters. A typical

Negotiation Support for Web Service Selection 37

scenario could be the one where, considering the process of setting up accommo-
dation and travel for summer week-ends, a designer wants to specify that every
Friday night a weather forecast service will be contacted and the negotiation
issues are related to the price established for the service provisioning: in the first
week-end the process hosts a buy side auction, where different forecast services
will participate, and twice in a month the process will re-negotiate the terms of
contract with the service that won the starting auction in an automated bilateral
negotiation process. The aim of our extension is to provide mechanisms, inside
BPEL4WS, for specifying different needs for negotiation in a process design at
abstract level of service definition.

Acknowledgments

This work has been partially supported by the Italian MIUR-FIRB Project
MAIS.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machirayu. Web Services: Concepts, Ar-
chitectures and Applications. Springer-Verlag, Heidelberg, New York, 2004.

2. L. Baresi, D. Bianchini, V. D. Antonellis, M. G. Fugini, B. Pernici, and P. Plebani.
Context-aware composition of e-services. In Proceedings of the 4th VLDB Workshop
on Technologies for E-Services TES’03, Berlin, Germany, September 2003.

3. B. Benatallah, Q. Sheng, and M. Dumas. The self-serv environment for web services
composition. IEEE Internet Computing, 7(1):40–48, February 2003.

4. B. Benatallah, H. Skosgrud, and F. Casati. Abstracting and enforcing web ser-
vice protocols. Int. Journal of Cooperative Information Systems, 15(6):1345–1363,
December 2003.

5. F. Casati, E. Shan, U. Dayal, and M.-C. Shan. Business-oriented management of
web-services. Communications of the ACM, 46(10):55–60, October 2003.

6. D. Box et al. Web Service Coordination (WS-Coordination). IBM, Microsoft, BEA,
http://www-106.ibm.com/developerworks/library/ws-polfram/, September 2003.

7. D. Box et al. Web Services Transaction (WS-Transaction). http://www-
106.ibm.com/developerworks/webservices/library/ws-transpec/, August 2003.

8. F. Cabrera et al. Web Service Coordination (WS-Coordination). http://www-
106.ibm.com/developerworks/library/ws-coor/, September 2003.

9. T. Andrews et al. Business Process Execution Language for Web Services
(BPEL4WS). http://www-106.ibm.com/developerworks/library/ws-bpel/, May
2003.

10. P. Faratin, C. Sierra, and N. R. Jennings. Negotiation decision functions for au-
tonomous agents. Int. Journal of Robotics and Autonomous Systems, 23(3-4):159–
182, 1997.

11. M. Hu, H. Leung, and N. R. Jennings. A fuzzy-logic based bidding strategy for au-
tonomous agents in continuous double auctions. IEEE Transactions on Knowledge
and Data Engineering, 15(6):1345–1363, December 2003.

12. P. Hung, H. Li, and J.-J. Jeng. Ws-negotiation: An overview of research issues.
In Proceedings of the 37th Hawaii International Conference on System Sciences,
pages 84–89, Hawaii, USA, February 2004.

38 M. Comuzzi and B. Pernici

13. N. R. Jennings, P. Faratin, A. Lomuscio, S. Parsons, C. Sierra, and M. Wooldridge.
Automated negotiation: Prospects, methods and challenges. International Journal
of Group Decision and Negotiation, 10(2):199–210, 2001.

14. F. Lin and K. Chang. A multiagent framework for automated bargaining. IEEE
Intelligent Systems, 16(4):41–47, August 2001.

15. C. Marchetti, B. Pernici, and P. Plebani. A quality model for multichannel adaptive
information systems. In Proceedings of the 13th World Wide Web Conference
WWW04, pages 49–55, New York, USA, May 2004.

16. S. Modafferi, A. Maurino, E. Mussi, and B. Pernici. A framework for complex
e-service provisioning. In Proceedings of the 1st IEEE International Conference on
Services Computing SCC’04, Shangai, China, September 2004.

17. The MAIS Team. Mais: Multichannel adaptive information systems. In Proceed-
ings of the 4th International Conference on Web Informaton Systems Engineering,
Rome, Italy, December 2003.

18. K. Binmore and N. Vulkan. Applying game theory to automated negotiation.
In DIMACS Workshop on Economics, Game Theory and the Internet, Rutgers
University, April 1997.

19. P. Faratin, C. Sierra, and N. R. Jennings. Negotiation decision functions for au-
tonomous agents. Int. Journal of Robotics and Autonomous Systems, 23(3-4):159–
182, 1997.

20. P. Faratin, C. Sierra, and N. R. Jennings. Using similarity criteria to make negotia-
tion trade-offs. In Proceedings of the 14th Int. Conference on Artificial Intelligence,
AAAI’97, Providence, Rhode Island, USA, July 1997.

21. M. Hu, H. Leung, and N. R. Jennings. A fuzzy-logic based bidding strategy for au-
tonomous agents in continuous double auctions. IEEE Transactions on Knowledge
and Data Engineering, 15(6):1345–1363, December 2003.

22. N. R. Jennings and S. Parsons. Negotiation through argumentation - a preliminary
report. In Proceedings of the 2nd Int. Conference on Multi-Agent Systems, Kyoto,
Japan, December 1996.

23. N. R. Jennings, P. Faratin, A. Lomuscio, S. Parsons, C. Sierra, and M. Wooldridge.
Automated negotiation: Prospects, methods and challenges. International Journal
of Group Decision and Negotiation, 10(2):199–210, 2001.

From Web Service Composition to
Megaprogramming�

Cesare Pautasso and Gustavo Alonso

Department of Computer Science,
Swiss Federal Institute of Technology (ETHZ),

ETH Zentrum, 8092 Zürich, Switzerland
{pautasso,alonso}@inf.ethz.ch

Abstract. With the emergence of Web service technologies, it has be-
come possible to use high level megaprogramming models and visual
tools to easily build distributed systems using Web services as reusable
components. However, when attempting to apply the Web service compo-
sition paradigm in practical settings, some limitations become apparent.
First of all, all kinds of existing “legacy” components must be wrapped
as Web services, incurring in additional development, maintenance, and
unnecessary runtime overheads. Second, current implementations of Web
service protocols guarantee interoperability at high runtime costs, which
justifies the composition of only coarse-grained Web services. To address
these limitations and support the composition of also fine-grained ser-
vices, in this paper we generalize the notion of service by introducing
an open service meta-model. This offers freedom of choice between dif-
ferent types of services, which also include, but are not limited to, Web
services. As a consequence, we argue that service composition – defined
at the level of service interfaces – should be orthogonal from the mech-
anisms and the protocols which are used to access the actual service
implementations.

1 Introduction

Megaprogramming [23] was originally introduced to describe the large scale
composition of megamodules, capturing the functionality of services provided by
large, independent organizations. Megaprogramming prescribed a clear separa-
tion of the description of the externally accessible data structures and
operations of a megamodule from the mechanisms used to interact with it. It
also emphasized the importance of mediation between incompatibile megamod-
ule descriptions.

Some of the existing languages for Web service composition (e.g. [5, 11]) do
not yet completely fulfill the megaprogramming paradigm because the services

� Part of this work is supported by grants from the Hasler Foundation (DISC Project
No. 1820) and the Swiss Federal Office for Education and Science (ADAPT, BBW
Project No. 02.0254 / EU IST-2001-37126).

M.-C. Shan et al. (Eds.): TES 2004, LNCS 3324, pp. 39–53, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

40 C. Pautasso and G. Alonso

to be composed are all assumed to be of a single type: Web services. Clearly,
when facing software integration problems at an Internet-wide scale, Web ser-
vices seem to be the most appropriate tool [8]. However, for many other kinds
of service integration scenarios, it would be an unnecessary restriction to as-
sume that all services that are to be composed must all be Web service compli-
ant. In fact, there are many existing, well established service access protocols
(e.g., RMI, CORBA, JMS, HTTP) that should not necessarily be considered
as out of date, when compared to Web services [1]. Furthermore, the media-
tion between incompatibile services turns out to be a very important require-
ment for successful integration projects. Thus, unless such “mediation services”
themselves are encapsulated behind a Web service interface, it is not possible
to efficiently address this important issue with current Web service composition
languages [6].

In this paper, we show how we applied megaprogramming concepts to gen-
eralize Web service composition in the context of the JOpera project [15]. Web
services can be considered as one kind of service, which is very useful, e.g., as it
offers syntactical interoperability with remote services in a platform independent
way [21, 22]. However, these benefits come at a price of a very high access over-
head. This is justified for invoking coarse-grained services, for which the internal
execution time dominates the overall invocation time. For other kinds of ser-
vices, i.e., fine-grained services, which perform a small computation, or for local
services, which are published within the same organization doing the service in-
tegration, it may be reasonable to employ other kinds of access mechanisms and
protocols. This way, it is possible to choose the most appropriate service type
in terms of the effort required to integrate it with others with the possibility of
minimizing the corresponding invocation overhead. As it would be impossible to
provide out-of-the-box support for all possible kinds of services, JOpera’s service
meta-model and the corresponding architecture can be extended to describe and
interact with an open set of heterogeneous service access mechanisms.

This paper is structured as follows. In Section 2 we discuss related work in
the context of Web service composition. In Section 3 we introduce JOpera’s
open service meta-model, followed in Section 4 by some examples on how to
apply it to describe three (very) different kinds of services: Web services, Java
snippets and legacy UNIX applications. In Section 5 we describe the relevant
aspects of JOpera’s architecture implementing the service meta-model. To give
an indication of the difference between the cost of invoking coarse-grained Web
services and fine-grained Java snippets we have included an overhead comparison
in Section 6. In Section 7 we draw some conclusions.

2 Related Work

The need for supporting a variety of service access protocols is also recognized
in the Web services community. To this end, the WSDL interface description
standard supports an open-ended set of bindings. Therefore, a Web service,
whose interface must be described using WSDL, does not necessarily need to be

From Web Service Composition to Megaprogramming 41

invoked using the relatively slow SOAP protocol if the client understands other
(non standard) protocols which may offer better performance.

Currently, however, alternative protocols are not yet widely supported and
as long as they are not standardized, using them would defeat the main point
of the Web service vision, where everything should be standardized in order to
achieve widespread interoperability [2].

Along these lines, the Web Services Invocation Framework (WSIF [9]) should
be mentioned, as it provides this kind of access transparency. It allows to dy-
namically build clients to Web services described in WSDL, independent of the
actual access mechanisms (e.g., SOAP) involved. As we will discuss in this paper,
our service meta-model goes beyond that since it is not limited to services de-
scribed with WSDL. Instead, it can be also applied to other interface description
languages.

Moreover, in order to bridge the gap between the existing component hetero-
geneity and the uniform Web services standards, wrappers and interface adapters
are still required to make the “legacy” types of components and protocols fit
with the new standards. This approach introduces unnecessary execution over-
head and shifts development and maintenance costs from the infrastructure to
the end user [14]. Thus, we believe it is less expensive to build once a generic
adapter to integrate a certain type of components into JOpera, instead of having
to setup a different Web service wrapper for each of the service of that particular
type that have to be integrated within a composite service.

Recently, to address the limitations of coarse-grained Web service composi-
tion, IBM and BEA systems proposed to extend the BPEL4WS [11] language
with support for including Java snippets [10]. Although the need for such an
extension was well argued, it remains unclear why, as opposed to Java, a .NET
compliant language should not be chosen instead. Thus, a service composition
technology which was originally tied to platform neutral Web services, becomes
tangled into portability issues [20].

This problem originates from the confusion between the description of the
composition and the description of the components. In our approach, we have
chosen to keep a clear separation between the two. Thus, our visual service com-
position language [17] doesn’t have to be modified to support new kinds of ser-
vices, such as Java snippets, as this extension only affects the service meta-model.

3 An Open Service Meta-model

Before describing in detail the properties of some of the service types currently
supported by JOpera, we introduce JOpera’s open service meta-model. This way,
we both motivate its flexibility and extensibility and summarize the information
required to model and to access each type of service.

As shown in Figure 1, the interface of a service is defined in terms of a
set of user-defined input and output parameters. This is the only information
which is used in JOpera to define how the services are composed when drawing
the data flow graph linking the parameters of different service interfaces [17].

42 C. Pautasso and G. Alonso

Service

Provider

Service

Interface

Service Type

Interface

Input Data Flow Mapping

Output Data Flow Mapping

Failure

Detection

Service

Client

Control Flow

Mapping

User Input Parameters

User Output Parameters

System Input Parameters

System Output Parameters

Fig. 1. Relationships between the various entities of the JOpera service meta-model

Thus, a service interface constitutes the minimal unit of composition. As a first
approximation the mechanisms involved in the invocation of a specific type of
service are kept completely transparent when modeling how to compose different
service interfaces.

However, in order to support the actual invocation of a service, it is necessary
to model additional information describing how to invoke its functionality and
how to structure the data exchanged with it. Such information is abstracted
into a service type. More precisely, when adding a new service type to JOpera’s
model it is necessary to define its interface (in terms of system parameters);
design how to interact with it in terms of control and data flow; and devise a
failure detection strategy.

Furthermore, the same service interface can be associated with multiple ser-
vice types. This way, it becomes possible to choose between alternative service
access mechanisms. On the one hand the service invocation can be dynamically
adapted to the actual system configuration, whereby the most optimal mecha-
nism is chosen depending on the current environment. On the other hand, if the
invocation fails using one mechanism, another path can be attempted to access
an alternative service provider.

From Web Service Composition to Megaprogramming 43

Ready

Service has been invoked

A failure has been detectedInvocation has completed

Running

Finished Failed

Fig. 2. Simple model of a service invocation

3.1 System Parameters

First of all, the interface of each service type is defined as a set of input ([i]) and
output ([o]) parameters. These are called system parameters, to distinguish them
from the user parameters, which are associated with the interface of the service.
It is worth noting that user parameters depend on the specific application and
therefore have nothing to do with the system parameters, which instead model
the information required to access a particular type of service.

The input system parameters control the service invocation, as they identify
the service and describe the information required to interact with the corre-
sponding service provider. Their values are set at design time, when registering
a new service with JOpera’s component library.

The output system parameters model the raw results of the invocation as
well as related metadata (e.g., status, performance profiling or debugging infor-
mation). Their values are set after the invocation has completed and can be used
to determine its outcome.

3.2 Control Flow

The transfer of control during one service invocation may involve different inter-
action patterns between the client and the service provider.

In the simplest case, the service is invoked synchronously, i.e., the client
blocks until the results of the invocation are available. This case captures typical
procedure-like invocations, e.g., a call to a local method, a remote procedure call,
an HTTP request/response round.

However, other protocols involve the asynchronous (or event-based) inter-
action between client and service provider, based on the exchange of a pair of
messages representing the starting of the invocation and the notification that
it has completed. Following this protocol, the client does not block after send-
ing the request to the service provider, although the invocation only completes
after the client is notified with a response. Depending on the available mecha-
nisms, the client may periodically poll the service provider for a response, or a
notification message is pushed back from the service provider.

44 C. Pautasso and G. Alonso

More sophisticated interactions with a service provider may involve the abil-
ity to abort, suspend and resume an ongoing invocation [19]. Likewise, it may
be possible to retrieve partial results even before the whole invocation has com-
pleted [18].

In order to ensure the transparency of these different interaction patterns, we
introduce a simple model of a single transfer of control between client and service
provider in Figure 2. Using this model, a control flow mapping can be easily de-
signed for the aforementioned synchronous and asynchronous cases. If necessary,
the Running state can be extended to support other forms of interaction.

3.3 Data flow

From the point of view of transferring control, the interaction with different
service types is not so difficult to model, as this amounts to describing the
invocation of the service and the corresponding notification that the service’s
invocation has completed.

In our experience, a more difficult challenge lies in modeling the data to
be exchanged with the service and in how to map JOpera’s parameter based
representation of its interface to the service’s internal one. For some service
types this can be relatively simple, at least from a syntactical perspective, where
standards (e.g., SOAP) define how to format the input data and how to interpret
the output data. In other cases, e.g., when integrating legacy UNIX applications,
the problem is much more difficult and there is no general solution, i.e., the ad-
hoc development of wrappers may be required.

In order to provide the necessary flexibility to integrate several different ser-
vice types, in JOpera we follow a two step approach to address the problem of
mapping user-level data parameters to the actual structure of the data under-
stood by the service type.

The mapping between user (application) parameters and system (service
type) parameters is specified once, when a new service component is registered
with JOpera. This mapping can be derived automatically, e.g., by reading the
WSDL description of a Web service.

The data flow mappings depicted in Figure 1 can be formally represented
as a composition of two mappings (mi, mo) which are applied to fit the input
and output parameters of a certain service call C to the given interface S. More
precisely, the interface of a service contains a set of user-defined input ([I]) and
output ([O]) parameters:

[O] = S([I])

Furthermore, a set of predefined service types Ct are available. These de-
fine the interface representation of the corresponding access mechanisms and
invocation protocols in terms of input ([i]) and output ([o]) system parameters:

[o] = Ct([i])

From Web Service Composition to Megaprogramming 45

In order to bind a service interface to an implementation of a given service
type, it is necessary to provide the corresponding input and output mappings:

[i] = mi([I])

[O] = mo([o])

At runtime, these mappings are composed with the invocation of service of
a given type as follows:

[O] = mo(Ct(mi(I))

Following such mapping, before a service can be invoked at runtime, the
user input parameters are translated to its system input parameters. The main
mechanism to model and perform this mapping (mi) consists of using parameter
placeholders, which identify one user input parameter and are replaced with its
content when the mapping is evaluated. These placeholders follow the simple
convention of including the name of a parameter between % characters [13].

The service is then invoked and the results are placed in the system output
parameters corresponding to its type. The reverse mapping mo from the system
output parameters to the user-defined output parameters is applied. As opposed
to the input mapping, where a relatively large number of user parameters are
assigned to a small number of system parameters, in this case it is more complex
to take the content of a few parameters, e.g., the output of a program or a Web
page, and model how to extract the application dependent information. For data
having a relatively well defined syntax, e.g., XML, it is possible to follow the
convention of encoding parameter names as tags and insert their values between
those tags [21].

In general, ad-hoc wrappers can be plugged into JOpera with the purpose
of scraping the values of the output parameters from the arbitrarily formatted
data produced by the service. Conversely, it is also possible to avoid breaking up
the results of the invocation into output parameters and treat the result (e.g.,
in form of XML documents or other encodings) as a whole.

3.4 Failure Detection

Not only do service invocations finish; sometimes they fail. Depending on the
type of service, failure detection may be based on different assumptions. For each
type of service, it is important to devise a well-defined failure detection strategy,
which determines the outcome of a service invocation. In case of failed invoca-
tions, a description of the problem involved can be stored in the corresponding
system output parameters.

Furthermore, depending on the type of failure, different low-level error han-
dling policies may be implemented. For example, the service invocation may be
retried, if this option is supported by the underlying protocol. Thus, only un-
recoverable failures occurring during the interaction with a particular service
provider remain to be handled at the level of the service composition. In this
case, exception handling constructs can be used to specify whether alternative
(or compensating) services should be be invoked instead.

46 C. Pautasso and G. Alonso

Table 1. Summary of the service types currently supported by JOpera

Service Type Input and Output Data Failure

WWW services
Web Service (SOAP) SOAP SOAP SOAP Fault
Web Server (HTTP) CGI/URL HTML HTTP Error

Local services
UNIX Application (UNIX) CmdLine, Stdin Stdout ExitCode, StdError

Java services
Java Program (JVM) CmdLine, Stdin Stdout ExitCode, StdError
Java Snippet (JAVA) Local Variables Exception
Java Remote Method (RMI) Method Parameters Exception

Database services
Database Query (SQL) Parameters XML JDBC Error

XML services
X-Path Query (XPATH) XML XML X-Path Processor Error
Style Sheet Transforma-
tion

(XSL) Parameters XML XSLT Processor Error

System services
JOpera Echo (ECHO) XML XML XML Parser Error
JOpera Process (OPERA) Implicit Parameters and Failures

Cluster/Grid computing services
BioOpera [4] (PEC) CmdLine Stdout ExitCode, StdError
Grid services [7] (GLOBUS) SOAP SOAP SOAP Fault

Business process modeling services
Workflow task (WF) Text Text User Error

4 Examples

In this section we show how to apply our service meta-model to abstract the
common features of different kinds of services. These represent three extreme
cases: standard compliant Web services, fine-grained Java scripts and legacy
UNIX applications.

Additionally, the current version of JOpera includes supports for many other
kinds of services, modeling a Java remote method invocation (RMI), a job sub-
mitted to a batch scheduling system of a cluster of computers, an SQL query to
be sent to a database, the asynchronous exchange of messages through a queuing
system, a human activity, and an XSL style sheet transformation to be applied
to some XML data packet [16]. In Table 1 we summarize the main properties of
some of the service types to which we have applied JOpera’s service meta-model.

From Web Service Composition to Megaprogramming 47

4.1 Web Services

This first type of services models the latest form of standard compliant Web
services, whose interface and location are described in a WSDL document [22]
and which are remotely accessible through the SOAP protocol [21]. Web ser-
vices offer the benefit of standard-based interoperability between heterogeneous
programming languages and platforms. With this technology, the effort of build-
ing systems composed out of services distributed across the Internet is greatly
reduced, at the price of a relative high runtime overhead due to the nature of
the protocols involved. Thanks to these standards, it is possible to automatically
import the service’s WSDL description into JOpera’s component library and use
it to generate the corresponding service declarations automatically.

System Parameters. The invocation Web service is described by the following
system input parameters: WSDL, with the URL used to locate the description of
the service; service, operation, port, with the names of the WSDL elements used
to identify the actual service, operation and port to be invoked; soapin, which
contains the complete envelope of the SOAP request message to be sent when
invoking the service. This includes both the header and the body of the SOAP
request message. The response (or fault) message returned by a Web service is
stored in the soapout system output parameter.

Data flow. The values of the user-provided input parameters are inserted in the
SOAP request message using the previously described placeholder mechanism.
In most cases, each input parameter corresponds to a SOAP message block. If
necessary, JOpera escapes the content of the parameters so that it conforms to
the required SOAP/XML encoding. The output parameters are filled by parsing
the SOAP response message.

Failures. The invocation of a Web service may fail for several reasons: its WSDL
description may be invalid; no response message from the service has been re-
ceived after a certain timeout has expired; the service has responded with a soap
fault message.

4.2 Java Snippets

This service type models the most efficient way of invoking Java code. By design,
such code (or snippet) is embedded by the compiler into the code generated
for a process. Thus, it can be invoked with minimal overhead. It can be very
beneficial to use this kind of service to perform small computations [10]. Java
snippets can be applied to perform data conversions, transforming the data in
transit between incompatible services. Also, it gives a convenient syntax for the
evaluation of complex conditional expressions. If the same computation would
have to be invoked using a different mechanism (e.g., Web services), the overhead
of the protocols involved would make it impractical to do so.

System Parameters. For Java snippets, there is only one system input parameter
(script) which contains the Java code itself. If an error occurs, the exception

system output parameter contains the message of the Java exception.

48 C. Pautasso and G. Alonso

Data flow. There is a one to one correspondence between user defined parameters
and the Java variables that can be implicitly used in the script. JOpera’s compiler
automatically declares Java variables for each input and output parameters.
After the snippet has completed, the values assigned to the Java variables are
copied into the corresponding output parameters.

Failures. JOpera detects a failure if a Java exception is raised and it is not
caught during the execution of the script.

4.3 UNIX Applications

Another type of services, quite different from remote Web services, are com-
mands to be executed in a shell of the local operating system. A shell command
is typically used to provide a generic mechanism of invoking entire ”legacy”
applications. As long as these applications do not provide an explicit API, the
command line may be the only viable mechanism to allow JOpera to interact
with such applications and control their execution. In other words, this type of
service is used to access the services provided by essentially any executable pro-
gram, which is started by typing a command line at the prompt of the operating
system shell.

System Parameters. As it is reflected by its system parameters (command, stdin,
stdout, stderr), JOpera employs both the command line itself and pipe-based
interprocess communication mechanisms in order to exchange data with the
external program. Furthermore, the retval system output parameter contains
the program exit code.

Data. The values of the user input parameters are transferred to the external
program both using its command line and can also be copied onto its stdin system
input parameter. If necessary, the stdout parameter can be parsed by a user-
provided plugin to extract relevant information to be assigned to the user defined
parameter.

Failures. JOpera interprets the value of the retval system parameter, which
contains the exit code of the process as it is returned by the operating system,
to distinguish between a successful execution (0) and a failed execution (non-
0). In both cases, it also stores the program’s standard error into the stderr

parameter so that the user can gather useful debugging information.

5 Architecture

In order to support an open and heterogeneous set of service invocation mech-
anisms, JOpera’s architecture uses plugins to extend the system’s behavior at
three different stages: service definition, service compilation and service
invocation.

As shown in Figure 3, the Service Library Manager uses service import
plugins to automatically import services described using other meta-models

From Web Service Composition to Megaprogramming 49

Runtime

Kernel

Process

Compiler

Service

Compiler

Visual

Composition

Environment

Service

Library

Manager

Process with

Service References

Service

Adapters

Process

Code

Service

Interfaces

Service

Mappings

Java

W
S

D
L

U
N

IX

S
O

A
P

Fig. 3. JOpera plugin based architecture

(e.g., WSDL). Using the Visual Composition Environment, the developer may
browse through the service library and select the service interfaces to be com-
posed into processes [17]. During process compilation, all of the data flow map-
pings, which are part of the services referenced by a process are compiled into
service adapters1. By default, the service compiler produces an efficient exe-
cutable representation of the data flow mappings of a service. However, the ser-
vice compiler can be extended with plug-ins corresponding to a specific type of
service. For example, in case of Java snippets, the Java code entered as part of the
aforementioned script parameter is injected into the resulting service adapter
code, surrounded by the variable declarations corresponding to the user-defined
parameters.

At run-time, the service invocation proceeds as depicted in Figure 1. The
runtime kernel uses the compiled service adapters to perform the input and
output data flow mappings, while the service is invoked through a kernel plugin.
Such plugin uses the mechanisms and protocols specific to a certain service

1 Although it is always possible to merge the code of the process with the service
adapter code at compile-time, this would fix the binding between service interface
and invocation adapter. Thus, in order to support late binding, the code of the
process only contains references to services, which are resolved at the latest possible
time.

50 C. Pautasso and G. Alonso

Table 2. Service Invocation Mechanisms to be compared

Service Type Description

JAVA Java Snippet
UNIX UNIX Application

SOAP/A11 Local Web Service using Axis 1.1 [3].
SOAP/A12 Local Web Service using Axis 1.2α.
SOAP/WS Remote Web Service using Axis 1.1.

type (e.g., UNIX, SOAP) to interact with the service provider and perform the
service invocation. Considering the service meta-model presented in Section 3,
these plug-ins define the control flow mapping and the failure detection strategy
for a given type of services and exchange information with the service adapters
through system parameters. The kernel plugins are loaded on-demand, so that
the system can be dynamically extended to deal with new types of services.

When adding support for a new type of service, a kernel plug-in is required.
A compiler plugin is only necessary if the service adapter should perform some
special processing before or after the invocation. A service import plugin can be
added if it is possible to automatically generate JOpera service definitions from
other interface description languages.

6 Overhead

Performance is one of the arguments behind the idea of providing support for
invoking services of different service types. In order to give an indication of the
overhead involved, we compare the time required by JOpera to invoke a remote
Web service across the Internet with the time JOpera takes to perform a local
Java method call, and – quantitatively – determine the cost (or the benefit) of
preferring services of a certain type over another.

As listed in Table 2, in this performance comparison we use services of various
types and several implementations of the corresponding kernel plugins.

More precisely, in this experiment we compare different access mechanism to
the same “Temperature Conversion Service”. We chose this service due to its
trivial implementation, so that the execution cost is negligible when compared
to the overhead of invoking it. Another reason to choose this service is that
we found a remote implementation on the Internet at [12]. With it, it becomes
possible to present an interesting comparison between the invocation overhead
of local and remote Web services.

As shown in Figure 4, the most important result of this simple experiment is
that the average service invocation overhead varies about three orders of magni-
tude (from about 1 millisecond to 2.31 seconds) depending on the service type.

The invocation of the Java snippet (JAVA) service offers an invocation over-
head of significantly less than 1/100th of a second, as the implementation of the

From Web Service Composition to Megaprogramming 51

S
e
r
v
ic

e
T
y
p

e

0.001 0.01 0.1 1 10

SOAP/WS

SOAP/A12

SOAP/A11

UNIX

JAVA

Time (seconds)

Fig. 4. Service Invocation Overhead for different service types

service is located within the same Java virtual machine where the JOpera kernel
is running.

Invoking the UNIX application requires to spawn a child process through the
local operating system, and this requires more time: about 0.28 seconds.

The average Web service invocation time is 0.42 seconds in case of a Web ser-
vice deployed on the local area network, called using Axis version 1.1 (SOAP/A11).
This time grows to 0.66 seconds using the latest version of Axis 1.2α (SOAP/A12).
In case of the invocation of remote Web service with Axis 1.1 (SOAP/WS), the
delay and jitter of the wide area network need to be discounted. This effect can
be recognized both in the higher (2.31 seconds) average response time and in
the very high standard deviation (0.9 seconds).

As expected, Web services are the most expensive service type in terms of
the overhead involved. Given the current state of flux of the relevant standards
and available implementations, the performance of the service invocation may
be significantly affected by the choice of which libraries are used. Additionally,
the location of the Web service also affects the overhead, as the cost of invoking
the remote Web service shows.

Since this additional cost is due to the distributed nature of the service inter-
action, it should not be blamed on the Web services protocols, which – instead
– are one of the few technologies currently enabling such type of distributed in-
teraction. Nevertheless, such overhead should be paid only when necessary, i.e.,
to invoke remote services, while more efficient mechanisms should (and can) be
used to access local services.

7 Conclusion

The main contribution of this paper lies in the idea that service composition
should be orthogonal with respect to the types of components involved. By in-
troducing a clear separation between the service composition language and the
service meta-model, we are able to isolate the description of how to compose the
services from how to invoke them. This approach is similar to megaprogram-

52 C. Pautasso and G. Alonso

ming [23], as it gives several conceptual and practical advantages. First of all,
it is not necessary to extend the composition language if a new kind of service
access mechanism has to be included, as this affects only the component model.
Likewise, if it is possible to redefine the access mechanism (e.g., synchronous
vs. asynchronous) to be employed without modifying the corresponding service
interface, such modifications are completely transparent as far as the description
of the composition is concerned. Such flexibility also leads to the possibility of
doing optimizations since it becomes possible to choose the most efficient mech-
anisms and protocols to access both fine-grained and coarse-grained services.
We are currently investigating several policies to autonomously select the opti-
mal mechanism. This is much more difficult to accomplish if the services to be
composed are restricted to only one type.

Finally, we believe that the possibility of choosing (wisely) between the use
of Web Services or other kinds of services can be of great value, as the most
appropriate type of service in terms of performance, security, reliability and
convenience of use can be chosen.

References

1. G. Alonso. Myths around Web services. Bulletin of the IEEE Technical Committee
on Data Engineering, 25(4):3–9, December 2002.

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web services: Concepts, Archi-
tectures and Applications. Springer, November 2003.

3. Apache Software Foundation. AXIS version 1.1. http://xml.apache.org/axis.
4. W. Bausch, C. Pautasso, R. Schaeppi, and G. Alonso. BioOpera: Cluster-aware

computing. In Proceedings of the 2002 IEEE International Conference on Cluster
Computing (CLUSTER 2002), pages 99–106, Chicago, IL, USA, 2002.

5. BPMI. BPML: Business Process Modeling Language 1.0. Business Process Man-
agement Initiative, Match 2001. http://www.bpmi.org.

6. C. Bussler. Semantic Web services: Reflections on Web Service Mediation and Com-
position. In Proceedings of the Fourth International Conference on Web Information
Systems Engineering (WISE 2003), pages 253–260, Roma, Italy, December 2003.

7. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integration.
Technical report, Service Infrastructure Workgroup, Global Grid Forum, 2002.
http://www.globus.org/research/papers/ogsa.pdf.

8. K. Gottschalk, S. Graham, H. Kreger, and J. Snell. Introduction to Web services
architecture. IBM Systems Journal, 41(2):170–177, 2002.

9. IBM and Apache Foundation. Web Service Invocation Framework (WSIF), 2003.
http://ws.apache.org/wsif/.

10. IBM and BEA Systems. BPELJ: BPEL for Java technology, March 2004.
http://www-106.ibm.com/developerworks/webservices/library/ws-bpelj/.

11. IBM, Microsoft, and BEA Systems. Business Process Execution Language for Web
services (BPEL4WS) 1.0, August 2002.
http://www.ibm.com/developerworks/library/ws-bpel.

12. C. Jensen. Temperature Conversion Service.
http://developerdays.com/cgi-bin/tempconverter.exe/wsdl/ITempConverter.

From Web Service Composition to Megaprogramming 53

13. F. Leymann and D. Roller. Business Process Management With FlowMark. In Pro-
ceedings of the 39th IEEE Computer Society International Conference (CompCon
’94), pages 230–234, February 1994.

14. J. Oberleitner and S. Dustdar. Constructing Web services out of Generic Compo-
nent Compositions. In Proceedings of the International Conference on Web services
(ICWS-Europe 2003), pages 37–48, Erfurt, Germany, 2003.

15. C. Pautasso. JOpera: Process Support for Web services.
http://www.iks.ethz.ch/jopera/download.

16. C. Pautasso. A Flexible System for Visual Service Composition. PhD thesis, Diss.
ETH Nr. 15608, July 2004.

17. C. Pautasso and G. Alonso. Visual Composition of Web Services. In Proceedings of
the 2003 IEEE International Symposium on Human-Centric Computing Languages
and Environments (HCC 2003), pages 92–99, Auckland, New Zealand, 2003.

18. N. Sample, D. Beringer, and G. Wiederhold. A Comprehensive Model for Arbi-
trary Result Extraction. In Proceedings of the 2002 ACM symposium on Applied
computing (SAC 2002), pages 314–321, Madrid, Spain, 2002.

19. H. Schuster, S. Jablonski, P. Heinl, and C. Bussler. A General Framework for
the Execution of Heterogeneous Programs in Workflow Management Systems. In
Proceedings of the 1st IFCIS International Conference on Cooperative Information
Systems (CoopIS’96), pages 104–113, Los Alamitos, CA, 1996. IEEE Computer
Society Press.

20. H. Smith. Enough is enough in the field of BPM: We don’t need BPELJ: BPML
semantics are just fine, April 2004.
http://www.bpm3.com/bpelj/BPELJ-Enough-Is-Enough.pdf.

21. W3C. Simple Object Access Protocol (SOAP) 1.1, 2000.
http://www.w3.org/TR/SOAP.

22. W3C. Web services Definition Language (WSDL) 1.1, 2001.
http://www.w3.org/TR/wsdl.

23. G. Wiederhold, P. Wegner, and S. Ceri. Towards Megaprogramming: A Paradigm
for Component-Based Programming. Communications of the ACM, 35(11):89–99,
1992.

Using Process Algebra for Web Services:
Early Results and Perspectives

Lucas Bordeaux and Gwen Salaün

DIS - Università di Roma ”La Sapienza”,
Via Salaria 113, 00198 Roma, Italia

{bordeaux,salaun}@dis.uniroma1.it

Abstract. Web services are computational entities distributed on the
web whose goal is to cooperate in order to work out simple or complex
tasks. In this paper, we advocate the use of process algebra as an ab-
stract and formal description formalism to tackle several issues raised in
the context of web services. Abstract processes are helpful to describe
services at different levels of expressiveness depending on the goal at
hand and to compose them in order to build more complicated services.
A great interest of using process algebra is that formal reasoning is made
possible at any time and for many purposes (e.g. composition correct-
ness) thanks to the existence of state-of-the-art tools. Abstract descrip-
tions may also be used as a first step to develop certified web services
following a well-defined method. We discuss all these ideas in this paper,
reinforcing them with simple examples.

1 Introduction

Web Services (WSs) emerged recently and are a promising way to develop ap-
plications through the internet. WSs are distributed, independent pieces of code
(one might also call them processes due to their behavioural foundation) which
communicate with each other through the exchange of messages. A central ques-
tion in WS engineering is to make a number of processes interact together to
work out a given task. WSs raise many theoretical and practical issues which are
part of on-going research. Some well-known open problems related to WSs are to
specify them in an adequate, formally defined and expressive enough language,
to compose them (possibly automatically), to discover them through the web,
to ensure their correctness, etc.

It is becoming well-admitted that the use of formal methods is worthy as
an abstract way to deal with WSs and then to tackle several issues raised in
WSs [4]. In this direction, process algebras (PAs) have been used recently at
different levels [24, 4, 29], particularly because they focus on the description of
behaviours, consequently they are appropriate to specify the exchange of mes-
sages between WSs. Additionally, many process calculi (CCS, TCSP, LOTOS,
π-calculus, Promela, etc) and accompanying tools (CWB-NC, CADP, MWB,
SPIN, etc) exist, which offer a wide panel of expressiveness to deal with valuable
issues (e.g. formal reasoning) in the WS area.

M.-C. Shan et al. (Eds.): TES 2004, LNCS 3324, pp. 54–68, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Using Process Algebra for Web Services: Early Results and Perspectives 55

The goal of this paper is to itemize and discuss some of these issues for which
PA is helpful. Therefore, after an introduction of process algebra in Section 2, we
will describe in Section 3 how PA and its tools may be used (i) to reason on WSs
to ensure properties of interest, (ii) to develop WSs from abstract descriptions
following a well-defined process, (iii) to compose WSs which could be an ade-
quate solution to the choreography issue and (iv) to orchestrate them. Section
4 compares the use of PA to other description languages (especially based on
transition systems) and Section 5 ends with concluding remarks.

2 What is a Process Algebra?

A PA is an abstract language to specify concurrent processes. A PA is based
on the notion of action corresponding to a local evolution of a process. Actions
are above all the way to express interactions (emissions and receptions) between
two (or more) processes. Basic operators to describe dynamic behaviours are the
sequence of actions, the nondeterministic choice and the parallel composition (de-
noted respectively ., + and | in the following). Furthermore, PA introduces other
constructs and uses different communication models (e.g. binary vs multi-party
communication, synchronous vs asynchronous). These calculi are formalised ax-
iomatically with algebraic laws which can be used to verify term equivalences,
and/or operationally using a semantics based on Labelled Transition Systems.
These formalisms are most of the time tool-equipped, enabling one to simulate
possible evolutions of processes, to check properties (e.g. to ensure that a bad
situation never happens) and to verify equivalences.

For illustration purposes, let us introduce a very simple piece of behaviour
written in a subset of CCS and its possible evolutions computed from its op-
erational meaning (Fig. 1). Synchronizations occur on complementary actions1

(one emission and one reception, respectively denoted ′a and a for example) and
the result of the synchronization is a τ action. A terminated process is written
0 (“do nothing”). In the execution tree (representing all possible executions of
a system) below, two processes are composed in parallel and may interact first
either synchronizing on the error action (left hand side arrow) or synchronizing
on the req action (right hand side arrow). Afterwards, for the right part, the
first process evolves along a local computation and may synchronize with the
other one on an ok or refusal action.

Now, we aim at surveying some languages that, in our opinion, are of interest
for WSs. All these calculi are as many possible choices one may prefer depending
on the aspects of services to be captured. Our goal is not to be exhaustive but
to let the reader know about existing material.

1 In the basic CCS, synchronizations are explicitly defined using the restriction oper-
ator \. For the sake of readability and comprehension, we consider here that they
occur between actions gathered in a synchronization set as illustrated in the example.

56 L. Bordeaux and G. Salaün

 synchronized actions
{error, req, ok, refusal}

tau (refusal)

’compute.(’ok.0+’refusal.0) | ok.0+refusal.0

’ok.0+’refusal.0 | ok.0+refusal.0

0 0

error.0+req.’compute.(’ok.0+’refusal.0) | ’error.0+’req.(ok.0+refusal.0)

tau (error) tau (req)

’compute

tau (ok)

0

Fig. 1. Possible evolutions of a simple CCS process

Data Descriptions. With regards to this aspect, let us introduce LOTOS.
It is an ISO specification language [16] which combines algebraic abstract types
(data and operations) and dynamic processes (inspired from CCS and CSP). The
point of interest is its expressiveness, particularly to describe rich data structures
(e.g. integers, list of integers, sets, etc). Each sort (or datatype) defines a set
of operations with arity and typing (the whole is called signature). A subset
of these operations, the constructors, are used to create all the elements of the
sort. Terms are obtained from all the correct operation compositions. Axioms are
first-order logic formulas which define the meaning of each operation appearing
in the signature.

Regarding the description of behaviours, LOTOS is made up of the classical
basic constructs extended with more advanced ones (interruption of a process
by another one, different parallel and sequential composition operators, etc).
At the syntactic level, data terms are directly integrated within the dynamic
constructs (local data, guards, value passing, exits). CADP2 is a toolbox sup-
porting developments based on LOTOS specifications. It proposes a wide panel
of functionalities ranging from interactive simulation to formal verification tech-
niques (minimization, bisimulation, proofs of temporal properties, compositional
verification, etc).

process Store[request, ok, nok] (* process parametrized by 3 channels *)
(s:Stock): exit := (* and a variable ‘s’ *)

request?id:Nat?q:Nat; (* receive two numbers ‘id’ and ‘q’ *)
((* from a channel named ‘request’ ; *)

[isAvailable(id,q,s)] -> (* if we have q items in stock then *)
ok; (* emit ok and update the stock *)
Store[request, ok, nok] (decrease(id,q,s))

[] (* OR *)
... (* other choices omitted *)

2 http://www.inrialpes.fr/vasy/cadp/

Using Process Algebra for Web Services: Early Results and Perspectives 57

The piece of LOTOS specification below describes the management of a stock
of products in a store. We especially focus on the reception of a request charac-
terized by the identifier of a product and a quantity. The operation isAvailable

checks the availability of such a quantity in the local stock. In case of positive
answer, an acceptance is communicated along the ok channel.

Asynchronous Communication. An example of a calculus based on asyn-
chronous communication is Promela [14]. Promela specifications consist of pro-
cesses, message channels, and variables. Promela has a C-like notation. This
modelling language is particularly well-known because it is the input language
of SPIN which is a state-of-the-art tool for analyzing the logical consistency of
distributed systems (esp. based on LTL model checking). Basic datatypes (e.g.
integers, boolean) may be handled and one advanced construct (array) is avail-
able as well to describe data. The language allows for the dynamic creation of
concurrent processes. Communication via message channels can be defined to be
synchronous (i.e. rendez-vous), or asynchronous (i.e. buffered).

Let us give a short piece of Promela code illustrating the language and the
need for asynchrony (and accordingly reasoning means on such descriptions). The
behaviour below shows a store receiving requests from a client and answering
positively or not depending on a value transmitted by the client. The interesting
point is that the store cannot start replying to requests before it receives a start
authorization. However, requests may be emitted from clients and then buffered
until the store is able to treat them.

proctype store(chan start, req, reply) /* 3 channel parameters */
{

start?x; /* receive x on channel ‘start’ */
do /* loop forever: */
:: req?y; /* receive value y on chan ‘req’ */

if /* test (whether y > 5) */
:: (y > 5) -> reply!1 /* if so, send 1 on reply channel */
:: (y <= 5) -> reply!0 /* otherwise send 0 on it */
fi

od
}

Mobility. The π-calculus [28] is a simple process algebra (based on CCS) ded-
icated to mobility and reconfiguration. Such functionalities are expressed using
name passing: one process may receive a name attached to an action that it uses
afterwards dynamically as a new communication port. Dynamic instantiations
are possible in this calculus using the spawning (or replication) operator. The
Mobility Workbench (MWB) is a prototype making it possible to prove tem-
poral properties and to check equivalences between processes written using the
π-calculus. Let us remark that other languages and tools (like Promela/SPIN)
allow a limited form of name passing.

For illustration purposes, we introduce a part of a bank service. A bank
receives first a request from a client and the port on which the client wants to

58 L. Bordeaux and G. Salaün

send his private code. Consequently, the port message is used after reception
as a classical communication channel. The bank emits on this channel too the
requested information. Every time the bank receives a request from a client, it
replicates itself in order to be ready to accept a new request.

agent Bank(request) = (* process parametrized by name ‘request’ *)
request(port).((* receive name ‘port’ on channel ‘request’ *)

Bank(request) (* create in parallel a new main process and *)
(* one which receives the code and emits info *)

| port(code).(^info)(’port<info>.0))

3 Tackling Some WS Issues Using PA

In this section, we introduce and describe for what issues PAs are helpful. First
of all, we emphasize that abstract processes may be used at different levels of de-
scription depending on what we want to represent, public (interfaces) or private
(execution details) aspects of its behaviour with more or less details regarding
the usefulness of such descriptions. Abstract descriptions are achieved in two
ways: (i) we can develop WSs considering the formal and verified specification
as a starting point (design stage); (ii) in the other direction, we can abstract in-
teracting executable services (described in an XML-based style or with a classical
programming language) to a description in PA (reverse engineering).

3.1 Formal Reasoning

The major interest of using abstract languages grounded on a clear semantics
is that tools can be used to check that a system matches its requirements and
works properly. Model checking [7] is the preferred technique at this level (espe-
cially compared to the theorem proving alternative [13]) because it works with
automata-based models (underlying models of process-algebraic notations), and
proofs are completely automated (press-button technology). Specifically, these
tools can help (i) checking that two processes are in some precise sense equivalent
– one process is typically a very abstract one expressing the specification of the
problem, while the other is closer to the implementation level; (ii) checking that
a process verifies desirable properties – e.g. the property that the system will
never reach some unexpected state.

Intuitively, two processes or services are considered to be equivalent if they
are indistinguishable from the viewpoint of an external observer interacting with
them. This notion has been formally defined in the PA community [25], and
several notions of equivalence have been proposed: trace equivalence, observa-
tional equivalence, strong bisimulation are the most relevant ones within the
context of WS. In [29], we show how such equivalence notions can be used to
check compatibility between services and then to ensure the correctness of a
composition.

The properties of interest in concurrent systems typically involve reasoning on
the possible scenarios that the system can go through. An established formalism
for expressing such properties is given by temporal logics like CTL� [20]. These

Using Process Algebra for Web Services: Early Results and Perspectives 59

logics present constructs allowing to state in a formal way that, for instance, all
scenarios will respect some property at every step, or that some particular event
will eventually happen, and so on. The most noticeable kinds of properties one
may want to ensure are:

− safety properties, which state that an undesirable situation will never arise;
− liveness properties, which state that something good must happen.
With regards to the reasoning issue, works have been dedicated to veri-

fying WS descriptions to ensure a correct execution and properties of inter-
est [29, 10, 8, 27, 9, 26]. Summarizing the approaches proposed so far, they ver-
ify some properties of cooperating WSs described using XML-based languages
(DAML-S, WSFL, WSDL, BPEL4WS, WSCI). Accordingly, they abstract their
representation and ensure some properties using ad-hoc or existing tools.

Reasoning abilities are strongly related to the visibility level. In case of reverse
engineering approaches, if processes are viewed as white or glass boxes, reasoning
on interacting processes is possible. However, processes are usually black boxes
(internal details are not unveiled to users) and the verification is restricted to
reason on visible interfaces or traces (execution results). On the other hand, in
case of development of certified WSs (described further in this paper), reasoning
steps can be straightforwardly carried out. Depending on the description model
chosen for WSs (and on the level of abstraction), an adequate language and tool
may be preferred. Another criterion which may influence such a choice is the
kind of checking to be performed.

Last but not least, we stress that a checking stage may be helpful for several
reasons and at different levels (as introduced above). In the next subsections,
even if we focus on other issues (development, composition, choreography), rea-
soning needs are of strong interest for all these problems.

3.2 Developing Certified WSs

Designing and developing certified and executable WSs is a promising direction
and very few proposals are dealing with such a question in a formal way. A
lot of work remains to be done to have at one’s disposal a smooth and formal
process (known as refinement) enabling one to develop (correct) running WSs
from abstract and validated descriptions.

At this level, we especially experimented the use of PA to develop executable
and certified WSs from such abstract descriptions [30, 6]. They are especially
worthy as a first description step because they enable one to analyze the prob-
lem at hand, to clarify some points, to sketch a (first) solution using an abstract
language (therefore dealing only with essential concerns), to have at one’s dis-
posal a formal description of one or more services-to-be, to use existing reasoning
tools to verify and ensure some temporal properties (safety, liveness and fairness
properties), to encode processes into executable services (we illustrate in the fol-
lowing with implementations developed using the BPEL standard), and finally
to execute them.

The link between the abstract level and the concrete one is formalised through
systematic guidelines which make it possible to translate such abstract processes

60 L. Bordeaux and G. Salaün

into WSDL interfaces and BPEL processes. Depending on the process algebra
(and particularly on its expressiveness) used in the initial step, running BPEL ser-
vices or just skeletons of code (to be complemented) may directly be obtained. We
emphasize that such an approach is valuable for many applications in e-commerce:
auction bargaining, on-line sales, banking systems, trip organizations, etc.

We illustrate our approach on a simple example; the reader interested in
the development of more complicated WSs following this approach may refer
to [30, 6]. The service to be developed aims at storing some private information
which can be accessed by clients. Each client sends its identifier and receives back
the corresponding stored information. For simplification reasons, we represent
all the managed data (identifiers, stored information) as natural numbers.

Since this service has to manage (possibly more complex) data, we specify
the behaviour of our service using the LOTOS calculus. The process AccessServ

below receives first an identifier along the request channel, tests whether this
identifier belongs to its local list l, and depending on the guard value sends the
corresponding piece of information (retrieved using the extractI operation) back
or emits the error code 0.

process AccessServ [request,reply](l:Info): exit :=

request?id:Nat; (
[isIn(id,l)] -> (* if we have the id *)

reply!extractI(id,l);exit (* return its associated info *)
[] (* OR *)
[not(isIn(id,l))] -> (* if we do not *)

reply!0;exit (* send value 0 *)
)

endproc

This abstract description has been validated using the CADP toolbox, even
if the simplicity of the case at hand does not require advanced reasoning steps
to check the correct processing of the service. We note that the process is not
recursive because it corresponds to the behaviour of one transaction which would
be instantiated as many times as needed.

Let us sketch the necessary guidelines to translate such a basic process in
WSDL and BPEL. Firstly, LOTOS emissions and receptions (gates, variables
and types) are encoded in WSDL using messages which are completely charac-
terized by the message, the port type, the operation and the partner link type.
The list of couples is encoded as a simple database containing one table with two
fields (identifier, info). A Java class has been encoded and contains methods to
access the database using SQL queries, e.g. to test the presence of an identifier
within one couple. The reception and the emission are translated as a receive ac-
tivity followed by a reply one. Parameters of the messages are adequately stated
using the assign activity before sending. The choice is composed of two branches
in which guards are used to condition the firing, thereby a switch activity is
employed to translate this LOTOS behaviour, and each branch is implemented
using a case activity whose guard corresponds to querying the database. We end

Using Process Algebra for Web Services: Early Results and Perspectives 61

with the skeleton of the BPEL code describing interactions between the access
service and a client. Experimentations have been carried out using Oracle BPEL
Process Manager 2.03 that enables one to design, deploy and manage BPEL
processes.

<sequence name="main">
<receive name="receiveInput" partnerLink="client"

portType="tns:AccessServ" operation="getNumber"
variable="request" createInstance="yes"/>

...
<!-- connecting to the db to check the presence of the couple -->
<bpelx:exec language="java" version="1.4">

...
//open the connection with the DB
/* verify if the couple is present in the list */
//close the connection with the DB

...
</bpelx:exec>
<switch>

<case condition="bpws:getVariableData(’available’) = true()">
<sequence>
<bpelx:exec language="java" version="1.4">

...
/* retrieve the second value from the couple */
...

</bpelx:exec>
<assign> <copy> ... </copy> </assign>
<reply name="replyOutput" partnerLink="client" ... />

</sequence>
</case>
<otherwise>

<sequence>
<assign> ... </assign>
<reply name="replyOutput" partnerLink="client" ... />

</sequence>
</otherwise>

</switch>
</sequence>

3.3 Choreography

E-business applications are developed from existing material rather than built
from scratch, and an ever-increasing part of the programming activity is devoted
to producing complex software by reusing and gluing together existing compo-
nents. Composition is the problem of finding the right way to put together a
judicious set of WSs in order to solve a precise task. Regarding this general
definition, choreography aims at defining a global model for services describing

3 http://www.collaxa.com/

62 L. Bordeaux and G. Salaün

precisely their interactions. On the other hand, orchestration is more dedicated
to coordinating WSs involved in a given composition for example. Herein, we
advocate the use of PA for either notion related to the composition question,
particularly because PAs are compositional languages. Accordingly, it is possible
to build complex WSs composing basic ones, and this can be carried out using
every construct pertaining to any PA.

Let us start focusing on the choreography issue. A central problem in chore-
ography is to find out a judicious expressiveness level for WS public interfaces
and to use them for composition purposes in a next step. As made explicit by
the W3C choreography working group [33] it is now accepted that, in a near
future, the interface of WS should evolve and that a description of their ob-
servable behaviour should be provided in addition to their sole WSDL interface.
Additionally, these interfaces have to be complemented by a precise way to define
how web services interact together. These descriptions will be based on an XML-
based standard like WSCI [32], BPEL [1] or WS-CDL [31]. PA may be viewed
as solution for this issue at an abstract description level [5, 29] but may also be
considered at a concrete level to inspire improvements of concrete XML-based
technologies.

Abstractly speaking, PA may be used as a way to describe the processes (at
least their interfaces) to be composed. Afterwards, interactions are implicitly
given by matching inputs and outputs of entities. In such a case, the PA parallel
composition operators are used directly as a way to denote such compositions
among entities: the global system is given as the parallel composition of the
entities. Depending on the operator used and its underlying semantics, many
communication models can be expressed (binary in CCS, n-ary in CSP, with
data exchange in LOTOS, etc).

Let us illustrate with a classical example of communications between a re-
quester and several providers written out in CCS. The requester sends requests,
receives refusals and terminates when it receives an acceptance.

proc Requester =
(’request.Requester *** emit a request and restart
+ refusal.Requester) *** OR get a refusal and restart
+ acceptance.nil *** OR get an acceptance and terminate

On the other hand, a provider receives requests and replies a refusal or an
acceptance.

proc Provider = *** recursively, receive a request and
*** send either refusal or acceptance

request. (’refusal.Provider + ’acceptance.Provider)

Parallel compositions and restriction sets are used to describe possible sys-
tems made up of a requester and several providers (three below). For the compo-
sition question, they are the means to work out interactions among the involved
entities. In this example, we do not specify explicitly receivers of actions (e.g.
ProviderA.request). However, they are not essential at this level of abstraction,

Using Process Algebra for Web Services: Early Results and Perspectives 63

and the main goal is that the request be accepted (acceptance reception). A
pictorial representation of these interacting services is represented in Figure 2.

*** we will impose synchronization on this set of action names:
set restSetC = {request,refusal,acceptance}

*** which restricts the composition of 1 requester and 3 providers:
proc SystemC = (Requester | Provider | Provider | Provider) \ restSetC

Provider

Provider

ProviderRequester

’request

’acceptance
’refusal

Fig. 2. An example of composition

In this subsection, we might imagine a description of service interfaces using
another notation4, the point of interest being the use of parallel composition
semantics as the way to express interactions among processes.

3.4 Orchestration

Orchestration may be viewed as the problem of writing a central piece of code
describing a possible way several web services may interact to work out a precise
task. Such a more expressive and explicit notation is sometimes required to take
more complex composition schemes into account. In such a case, PA may be
used as an explicit orchestration language (BPEL is an executable XML-based
language whose purpose is similar, but at the programming level). Interactions
are expressed as one or several orchestrator processes and then the whole system
is given as the parallel composition of the entities and the orchestrator(s).

For illustration purposes, let us continue on our previous example. We imag-
ine that we want for any reason to complete one transaction fired by a request

4 The only assumption to be respected is that processes are described using a LTS-
based model.

64 L. Bordeaux and G. Salaün

emission before trying another one. According to such a requirement and with
respect to the existing services (Requester and Provider), we have to introduce
an orchestrator whose goal is to control transactions and to reiterate the request
until a provider answers positively.

proc Orchestrator = *** Mutually recursive processes:
request. (’req1.Orch1 *** On request, send message to either

+ ’req2.Orch2) *** provider 1 or 2, and call the
*** corresponding process

proc Orch1 = nok1.’refusal.Orchestrator
+ ok1.’acceptance.nil

proc Orch2 = nok2.’refusal.Orchestrator
+ ok2.’acceptance.nil

In the example below, we introduce some processes interacting together. We
rename actions (using the notation [newname/oldname, ...] meaning that all the
occurrences of the action oldname in the behaviour are replaced by newname) as
defined initially to distinguish the two transactions (with each provider instance).
By the way, we stress that the use of such an orchestrator is helpful in case of
heterogeneous definitions of services: it allows to compensate their differences
(basic adaptations). We end in Figure 3 with an overview of these interacting
entities.

set restSetO = {request,refusal,acceptance,req1,ok1,nok1,req2,ok2,nok2}

*** we rename channels of the two providers in the composition:
proc SystemO = (Requester

| Provider[req1/request,ok1/acceptance,nok1/refusal]
| Provider[req2/request,ok2/acceptance,nok2/refusal]
| Orchestrator) \ restSetO

’req2
Requester Orchestrator

Provider

Provider

’request

’refusal
’acceptance

’nok1
’ok1

’req1

’ok2
’nok2

Fig. 3. An example of orchestration

In this subsection, we describe processes using PA, but it is not mandatory be-
cause PA is used here to express interactions among services. Basically, we would
imagine to use WSDL interfaces as a simple description of services to be composed.

Using Process Algebra for Web Services: Early Results and Perspectives 65

4 Related Works

In this paper, we advocate the use of PA at different levels and for different
purposes (description, composition, reasoning, development). Our objective in
this section is to compare existing works with the proposals at hand.

At this abstract level, many works originally tended to describe WSs and
their composition using semi-formal notations, especially workflows [19]. More
recently some more formal proposals grounded for most of them on transition
system models (LTSs, Mealy automata, Petri nets) have been suggested [15, 27,
12, 2, 18]. PAs are adequate to describe WSs, because they allow to formally
describe dynamic processes. Compared to the automata-based approaches, its
main benefit is its expressiveness, particularly due to a large number of existing
calculi enabling one to choose the most adequate formalism depending on its final
use. Additionally, another interest of PA is that their constructs are adequate to
specify composition due to their compositionality5 property (not the case of the
Petri net notation for instance). At last, textual notations (even if sometimes
criticized to be less readable than transition systems) are more adequate to
describe real-size problems, as well as to reason on them.

Regarding the reasoning issue, works have been dedicated to verifying WS de-
scriptions to ensure some properties of systems [29, 10, 8, 27, 9, 26]. These works
use model checking to verify some properties of cooperating WSs described using
XML-based languages (DAML-S, WSFL, BPEL, WSCI). Accordingly, they ab-
stract their representation and ensure some properties using ad-hoc or existing
tools. As far as the composition is concerned, different techniques have emerged
which ensure a correct composition such as automatic composition [2, 23], plan-
ning [22, 18] or model deduction [27]. However, most of the other proposals do
not ensure this composition correctness [9, 15, 12]. The use of powerful proof
theory accompanying PA helps to readily check equivalences between possible
requests and composite WS, and then to ensure a correct composition. On a
wider scale, PA are equipped with state-of-the-art reasoning tools, such as the
SPIN model checker or the CADP toolbox, and hence are adequate to any kind
of press-button reasoning.

Finally, we note that, to our knowledge, very few formal approaches have been
proposed to develop certified WSs. The recent proposal of Lau and Mylopoulos
[17] argues that TROPOS (an agent-oriented methodology) may be used to design
WSs, but this paper does not take into account the formal part of the methodol-
ogy [11]. Mantell [21] advocates a tool to map UML processes into BPEL ones,
but the semi-formality of UML is a limit to the validation and verification stage.
On the industrial side, platforms like .NET and J2EE make it possible to develop
WSs, but they do not propose methods (above all formal) to achieve this goal.

5 Compositionality corresponds to the possibility to build bigger behaviours from small
ones.

66 L. Bordeaux and G. Salaün

5 Concluding Remarks

PA offers a wide panel of languages and tools to deal with many issues raised in
WSs. While being based on a small core of usual operators, they propose many
variants to deal with many specific aspects (data description, time, probability,
mobility, etc) and involving different communication models.

When one uses a PA for reasoning purposes, it is worth noting that, while
selecting the description language, an adequate trade-off should be chosen be-
tween expressiveness of the calculus i.e. the richness of WS features which can be
described, and the verification abilities of the tool support accompanying such
an algebra. In this direction, the goal is to abstract the system so as to reason on
it using existing tools. Consequently, the more we abstract, the easier the rea-
soning is (but the less precise of course). A well-known example to justify this
statement is the state explosion problem raised while trying to verify processes
involving data descriptions.

A recent trend aims at using the π-calculus in the WS area. Regarding the
directions mentioned herein, at first sight, the π-calculus does not seem adequate
because: (i) the name passing is not of interest for the interface description, (ii) it
is not possible to express the name passing into existing XML-based technologies
(e.g. BPEL with regards to the development stage), (iii) it still lacks efficient
and robust model checkers. However, these notions of name passing and dynamic
instantiations are definitively of interest in the context of WSs (a new client
arrives and has to tell the address where answers should be sent, the server forks
and dynamically creates a sub-process parametrized with a new address, etc)
and may be put forward in the next technology proposal step.

The results we have overviewed in this paper are at an early maturity
stage and much work remains to be done before they are widely applicable
to large-scale applications. Many perspectives can naturally be considered. A
first one concerns the use of PA for WS development. Although it is promis-
ing due to the similar foundation of such abstract descriptions and some of
the possible executable languages (such as BPEL), some work remains to be
carried out to have at one’s disposal a formal refinement allowing a correct
encoding from one level to the other one. In this direction, the implementa-
tion of a prototype generating (skeletons of) executable code is considered as
well. Another direction is to study a possible adjustment of existing equiv-
alence checking algorithms so as to propose efficient automatic compositions
of WSs. A related issue is to determine which compatibility checking (to en-
sure the possible composition of a set of WSs) can be performed using ex-
isting tools [3]. This raises the longer-term perspective of adaptation: when
some services are not compatible, one can envision to automatically create
adaptors, i.e. pieces of codes sitting between WSs and which ensure a correct
communication. Finally, PA may be viewed as a great source of inspiration
for the design of standard proposals in the context of WSs.

Using Process Algebra for Web Services: Early Results and Perspectives 67

Acknowledgments

This work is partially supported by Project ASTRO funded by the Italian Min-
istry for Research under the FIRB framework (funds for basic research). The
authors thank Antonella Chirichiello for her help on the part dedicated to the
development of processes in BPEL.

References

1. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Specification:
Business Process Execution Language for Web Services Version 1.1. 2003. Available
at http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/.

2. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Auto-
matic Composition of E-services That Export Their Behavior. In M. E. Orlowska,
S. Weerawarana, M. P. Papazoglou, and J. Yang, editors, Proc. of ICSOC’03, vol-
ume 2910 of LNCS, pages 43–58, Italy, 2003. Springer-Verlag.

3. L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are two Web Services
Compatible? In Proc. of TES’04. To appear.

4. M. Bravetti and G. Zavattaro, editors. Proc. of the 1st International Workshop on
Web Services and Formal Methods (WS-FM’04), Italy, 2004. To appear in ENTCS.

5. A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing Web Services
Choreographies. In Proc. of WS-FM’04, Italy, 2004. To appear.

6. A. Chirichiello and G. Salaün. Developing Executable and Certified Web Services
from Abstract Descriptions. Submitted.

7. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 2000.
8. A. Deutsch, L. Sui, and V. Vianu. Specification and Verification of Data-driven

Web Services. In ACM, editor, Proc. of PODS’04, pages 71–82, Paris, 2004. ACM
Press.

9. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification of Web
Service Compositions. In Proc. of ASE’03, pages 152–163, Canada, 2003. IEEE
Computer Society Press.

10. X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In Proc.
of WWW’04, pages 621–630, USA, 2004. ACM Press.

11. A. Fuxman, L. Liu, M. Pistore, M. Roveri, and J. Mylopoulos. Specifying and
Analyzing Early Requirements: Some Experimental Results. In Proc. of RE’03,
USA, 2003. IEEE Computer Society Press.

12. R. Hamadi and B. Benatallah. A Petri Net-based Model for Web Service Com-
position. In K.-D. Schewe and X. Zhou, editors, Proc. of ADC’03, volume 17 of
CRPIT, pages 191–200, Australia, 2003. Australian Computer Society.

13. J. Harrison. Verification: Industrial Applications. Lecture at 2003 Marktoberdorf
Summer School, USA.

14. G. J. Holzmann. The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading, Massachusetts, 2003.

15. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-Services: a Look Behind the
Curtain. In ACM, editor, Proc. of PODS’03, pages 1–14, USA, 2003. ACM Press.

16. ISO. LOTOS: a Formal Description Technique based on the Temporal Order-
ing of Observational Behaviour. Technical Report 8807, International Standards
Organisation, 1989.

68 L. Bordeaux and G. Salaün

17. D. Lau and J. Mylopoulos. Designing Web Services with Tropos. In Proc. of
ICWS’04, pages 306–313, San Diego, USA, 2004. IEEE Computer Society Press.

18. A. Lazovik, M. Aiello, and M. P. Papazoglou. Planning and Monitoring the Exe-
cution of Web Service Requests. In M. E. Orlowska, S. Weerawarana, M. P. Pa-
pazoglou, and J. Yang, editors, Proc. of ICSOC’03, volume 2910 of LNCS, pages
335–350, Italy, 2003. Springer-Verlag.

19. F. Leymann. Managing Business Processes via Workflow Technology. Tutorial at
VLDB’01, Italy, 2001.

20. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems – Safety.
Springer, 1995.

21. K. Mantell. From UML to BPEL. IBM developerWorks report, 2003.
22. S. A. McIlraith and T. C. Son. Adapting Golog for Composition of Semantic Web

Services. In D. Fensel, F. Giunchiglia, D. McGuinness, and M.-A. Williams, editors,
Proc. of KR’02, pages 482–496, France, 2002. Morgan Kaufmann Publishers.

23. B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing Web services
on the Semantic Web. The VLDB Journal, 12(4):333–351, 2003.

24. G. Meredith and S. Bjorg. Contracts and Types. Communications of the ACM,
46(10):41–47, 2003.

25. R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

26. S. Nakajima. Model-checking Verification for Reliable Web Service. In Proc. of
OOWS’02, satellite event of OOPSLA’02, USA, 2002.

27. S. Narayanan and S. McIlraith. Analysis and Simulation of Web Services. Com-
puter Networks, 42(5):675–693, 2003.

28. J. Parrow. An Introduction to the π-Calculus, chapter 8, pages 479–543. Handbook
of Process Algebra. Elsevier, 2001.

29. G. Salaün, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web Ser-
vices using Process Algebra. In Proc. of ICWS’04, pages 43–51, San Diego, USA,
2004. IEEE Computer Society Press.

30. G. Salaün, A. Ferrara, and A. Chirichiello. Negotiation among Web Services us-
ing LOTOS/CADP. In M. Jeckle and L.-J. Zhang, editors, Proc. of ECOWS’04,
volume 3250 of LNCS, Germany, 2004. Springer-Verlag. To appear.

31. W3C. Web Services Choreography Description Language Version 1.0.
Available at http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/.

32. W3C. Web Services Choreography Interface 1.0.
Available at http:www.w3.org/TR/wsci.

33. W3C. Web Services Choreography Requirements 1.0 (draft).
Available at http:www.w3.org/TR/ws-chor-reqs.

M.-C. Shan et al. (Eds.): TES 2004, LNCS 3324, pp. 69 – 79, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Flexible Coordination of E-Services

Roger S. Barga1 and Jing Shan2

1 Microsoft Research, Microsoft Corporation
Redmond, WA 98053

2 College of Computer & Information Science,
Northeastern University,

Boston, MA 02115

Abstract. Information systems are increasingly being built using e-services in-
voked across the internet. Businesses can create a virtual application by com-
posing simpler existing e-services provided by a number of different service
providers. These composed e-services, or e-workflows, must operate in a
highly fluid environment, where new services become available for use and
business practices are subject to frequent change. This imposes demanding re-
quirements for flexibility on the workflow system that manages the business
process. In this paper we describe our efforts to extend workflow orchestration
by incorporating information workers in process enactment, to enable both sys-
tem and users to cooperate in interpreting the process model. This allows for a
variety of methods for simple e-services to be interconnected and composed
into more complex e-services. This approach also provides an elegant way to
incorporate ad hoc changes or specialization during workflow enactment and to
react to exceptions. We are building a prototype of our workflow adaptation
services on top of a commercial workflow orchestration engine.

1 Introduction

Despite having ample reason to do so, very few businesses system-support the proc-
esses behind their bread and butter operations. Today business processes are typically
run by information workers guided by process 'maps', often memorized, where the
system offers no active support or enforcement. While workflow management sys-
tems have been around for years, their penetration into core processes of enterprise
businesses is poor – only a few percent of candidate systems. One main reason is that
when businesses have tried to build workflow systems that embody a process, in par-
ticular where involvement from information workers is required, the exercise has
been painful and delivered poor return on investment. This failure of workflow man-
agement has partly been attributed to a lack of flexibility. The challenge is to support
process automation and yet provide information workers the opportunity to add
unique value to the process. This is essential for composition of e-services, where of-
ten the next step in a process flow depends on information available only at runtime;
typically, information workers make these critical decisions based on runtime context.
Consequently, flexible workflow management is now an active research topic.

70 R.S. Barga and J. Shan

Previous work in the area has examined how a workflow system can be extended and
enhanced, how static workflows can be made adaptive. Research challenges for
adaptive workflow include:

 Controlled handling of exceptions during execution; [Casati98, HG98]
 Support for process model change, migrating active instances from an old

workflow schema to a newer version; [EKR95, RD98, HSB98, HSW01]
 Local adaptation or specialization of a workflow instance; [GSB+00, CIJ+00,

BDS+02, ZFC+02]

While previous work in this area recognizes that change is a way of life in execut-
ing a business process, a basic premise underlying this research is still that work is re-
petitive and can be relatively completely prescribed. And while an understanding
seems to have emerged that changes to the flow of a business process requires process
definition and process enactment to be entwined, most efforts on adaptive workflow
are based on the premise that the workflow enactment engine is solely responsible for
interpreting the model [Jorg01]. In other words, information workers are free to con-
tribute by making alterations to the process model, but not by actively interpreting as-
pects of the model at runtime. Thus, the process model must be formally complete to
prevent ambiguity and deadlock from paralyzing process execution. This view com-
plicates process model design, because all variants must be included a priori. Com-
pletely describing the model and possible variants is always harder than first thought
– exception cases start coming out of the woodwork, and then exceptions to the ex-
ception cases. Describing a model in advance also precludes typical customizations
required to deploy a system, first by the ISV and then by end users. In summary,
these model-centric approaches to supporting flexible workflows suffer where infor-
mation workers are involved, or where there needs to be more than one way of think-
ing about a process.

We believe that flexible workflow management requires both automation and in-
formation worker interactivity. We are exploring an approach to workflow enactment
in which system and users interact in interpreting the model and handing exceptions
that may arise. While the system makes decisions about prescribed activities and en-
forces correctness guarantees, users are free to select from available options or com-
pose activity code on the fly to resolve ambiguities and handle special cases. Subject
to less strict rules the articulation of the workflow can be more fluent; hence, the gap
between modeled and real business processes can be decreased. More importantly,
when facing changes in business practices, unexpected events or exceptions, informa-
tion workers will not abandon the system if they are able to change its runtime con-
figuration.

1.1 Application Requirements for Flexible Workflow Processing

To better understand the requirements for flexible workflow support, our company
spoke to a large number of their small business and enterprise customers that deploy
and support workflow based applications and services. One of the more common re-
curring patterns in their business requirements is support for “human intervention”.

 Flexible Coordination of E-Services 71

First, let’s consider the instance of a business process. A clear requirement is that
information workers want the ability to intervene in the process at any point. These
users see their ability to be flexible as a competitive advantage, and do not want soft-
ware to get in the way of this ability. These information workers that interact with the
process make key business decisions, resolve problems, clarify expectations, and han-
dle changes and track progress at each step along the way. These users also expressed
the need to invoke ad hoc activities on demand as the business process unfolds, possi-
bly taking advantage of new e-service types or instances.

Second, we found that business processes themselves – not the design, not the in-
stance, tend to have a relatively short life span. Information workers tend to change
them over time, such as in continuous process improvement programs and process re-
engineering. Consequently, support for composed e-services must allow for rapid and
continual change after initially being deployed.

The requirements we have for flexible e-service coordination are:

1. We want the system to include an understanding of business goals, and be able
to guide users towards achieving them;

2. We want to maximize the freedom experienced by users, while at the same
time ensuring that they don’t violate the business constraints. If a new type of
e-service is available then an information worker should be free to include it, as
long as it does not violate correctness constraints;

3. We want to model the process in a way that keeps the map between the busi-
ness problem and model as simple as possible, in order to maximize fidelity to
the business requirement.

4. We want to vary the level of detail we put into the model, so as to make sure
we maximize the return on investment in our initial analysis and deployment
efforts;

5. We want a modeling technique that supports customization, so that product
builders, ISVs and customers are all enabled to add their requirements to a sys-
tem in a way consistent with their capabilities;

In short, we need a workflow system that supports flexible and correct human interac-
tion with the system at runtime.

2 Interactive Enactment for Flexible Workflows

The core components of our baseline workflow management system are illustrated in
Figure 1. In this section we highlight our observations, insights and approach to ex-
tend these components to support interactive enactment of a business processes.

Examples of the type of interaction we seek to support include the following:

 Detect and resolve business exceptions generated by errors in message con-
tents, message sequencing/omission problems or exceptions to business policy;

 Manually moving the process forward or backward one or more steps;
 Canceling a process at any time;

72 R.S. Barga and J. Shan

 Injecting process steps on the fly to handle additional process steps deemed
necessary by the information worker (e.g., case escalations);

 Including unstructured correspondence within the process;
 Allowing process steps to be fulfilled by manual actions or unstructured cor-

respondence;

Fig. 1. Illustration of primary functional components in our workflow management system

These requirements for interactive enactment impose some significant design
challenges to extend the components of a workflow system. One of the more signifi-
cant challenges is to enhance the model for process definitions that supports both
automation and interactivity. Support for unstructured correspondence, for example,
presents challenges in the area of correlation and storage. The design of the model
definition is also a challenge in terms of the breadth of meta-data that must be in-
cluded to open aspects of the system for interaction. In addition, we must provide the
ability for information workers to dynamically alter an active instance of a workflow
at runtime, to react to changing business conditions or exceptions. Lastly, the design
of visual tools to track and interact with an active workflow present their own design
challenges.

 Flexible Coordination of E-Services 73

2.1 Activity Representation

The workflow engine on which we are basing our implementation activates a process
model to coordinate the execution of units of work called activities. In most systems,
enactment is completely specified by the process model. Such strict adherence to a
prescribed model makes it difficult to adapt or respond to unforeseen circumstances.
In contrast, interactive enactment allows intertwined articulation and activation of an
evolving online model. Change and exception handling is accommodated either by
user-controlled activation (re-interpretation) or by updating the model at runtime.
Because user interaction is allowed in activation and not just in modeling, the process
model need not be 100% complete – low fidelity models are permitted. The low-
fidelity model, which utilizes placeholder activities [GSB00] and interaction points,
captures the essence of the process while abstracting details that can not be fully
specified at design time. Placeholder activities identify the position of an activity in
the flow, along with input and output signatures and optional correctness constraints.
An interaction point is a breakpoint in process execution where information workers
can inject new activities or adjust work items. The situated nature of the interaction
further enhances the usability of such process models. At the extreme, we allow a
models with no structure, just an unordered list of activities.

Activities are the scheduling primitives for our runtime – these are the actions
done by one person at one place and at one time, such as sending an order request to
an e-service or recording shipment of an order. Each activity provides well-understood
behavior and explicit state reliance and impact. The system is modeled as a set of
nodes, each representing an activity or composite activity in the context of a business
goal. Each node includes the following attributes (other details not related to the sub-
ject of this paper are omitted for brevity):

• An ‘available’ expression that specifies process and resource events that can
trigger the activity (i.e., when the activity can be applied);

• A guard predicate that specifies runtime state that must satisfied before activity
execution can proceed;

• An ‘optional’ expression, to indicate if an activity is mandatory or optional;
• An optional ‘provides’ expression (resource);
• An optional ‘requires’ expression (resource);
• The body, which is the executable code block for the activity;
• An optional ‘terminate’ expression that identifies conditions under which the ac-

tivity should be terminated;
• A ‘status’ variable indicating if the activity is complete, terminated, deferred, in

process, etc.;
• A correctness constraint that identifies one or more named predicate(s) that

must be satisfied after activity execution;
• A list of conditional triggers to be fired upon completion of the activity;

Enactment is driven by events, classified as either process events or resource
events. Process events signal action initiation and completion, and are generated di-
rectly by activities as a consequence of performing activities. Resource events reflect

74 R.S. Barga and J. Shan

changes in the environment, such as creation, deletion, and modification of resources,
and temporal events such as deadlines or alarms. A coordinating process is responsi-
ble for evaluating activity expressions against the event stream – the result is a list of
activities that must be performed to reach a given business goal, and a list of activities
currently valid to perform in the context of that goal. Guards are expressions consist-
ing of a reference to named rules. The rules and guards are part of the standard run-
time package, which an ISV can extend or modify over time.

The completion of an activity can make a number of additional events available
for an activity to perform: a process event signals the completion of an activity using
triggers, which makes the next activity in the nominal control flow available. In addi-
tion, the completion of an action may include the creation or modification of one or
more resources as side-effects, generating resource events making additional actions
available. The coordinating process will then re-evaluate the expressions and produce
a new list of activities, possibly recommending one for the benefit of novice users,
and also show other actions available as the result of resource events. If there are
multiple possible activities then the “available list” is presented to the user in an ac-
tion pane or other form. In addition to providing this list of activities, the coordinator
permits a user with proper privileges to manually supply an activity to respond to the
event; a user interface is available for the information worker to compose an activity
at runtime and correctness is enforced by constraints that specify guarantees that must
be upheld after it is executed. This allows qualified users to intervene in the process
at any point, to select newly available e-services, invoke ad hoc processes on demand,
or react to exceptions that arise during normal processing.

The constraints on activity transitions are expressed using requires and provides
statements. These are predicates that express inputs and outputs of each activity in
the process, and thus the data pre-conditions and post-conditions that exist at each
step. If at runtime a user wishes to skip a standard step on which a later step depends,
a built-in guard will detect the data dependency. We provide additional nodes, repre-
senting manual data input processes, whose ‘available’ expression is the inverse of the
guard clauses. Then, when progress is blocked a UI automatically becomes available
that prompts the user to supply the missing data so the process can proceed.

2.2 Exception Handling

In general, most business processes consist of repeatable patterns that can be modeled
in advance. However, while the expected path is generally quite simple, it is the
number of exception paths as well as the number of operations such as change and
cancel that can occur at any time during the life-cycle that creates considerable com-
plexity when one tries to flow-chart the process. We refer to the expected path as the
“happy path”. Business exceptions cause the process to take a detour off the happy
path. Examples of business exceptions include the following:

 Confirmations not being received on time – may be resolved by continuing to
wait or moving the workflow forward, skipping the confirmation step;

 Errors in shipping codes on a sales order – may be resolved by correcting the
codes, accepting them as is or rejecting the order;

 Flexible Coordination of E-Services 75

 A purchase order amount that exceeds business policy – may be resolved by
changing the order or initiating an approval process;

 An order cannot be fully confirmed – may be resolved by accepting the partial
order or renegotiating the order with the vendor;

Exceptions are resolved by information workers that track the order and guide it
thru its life cycle. Business decisions that affect the process are made by these infor-
mation workers on a continual basis as they manage each process. We discovered
that the processes in use by these customers must allow for information worker inter-
vention at any stage. During these interactions, the process can be diverted down a
different path, pushed ahead to a different state or held back. We also discovered that
unstructured correspondence, such as emails and faxes, plays a vital role in these
processes. Unstructured correspondence is needed to supplement, or even replace, ac-
tions in a modeled process. We address this issue again later in this section.

2.3 Supporting Adaptation of Active Workflow Instances

As previously described, exceptions and user interaction are possible with every step
in a business process. The information worker must be free to skip or repeat actions.
Changes and cancellations are allowed at any stage of the process. Validation and
business policy exceptions requiring human intervention can occur with every mes-
sage sent or received. These requirements quickly turn a process with only a handful
of actions into a complex set of possible flows. One way we deal with this is to allow
the information worker the ability to adapt a running workflow instance at runtime.

To better understand the requirements for workflow adaptation, let’s consider the
possible states of a running workflow illustrated in Figure 2. The running instance of
a workflow model contains a description of activities that have already been com-
pleted, that are active and currently being worked on, and that are planned but not yet
carried out. It is desirable that (1) already planned parts of a workflow model can be
easily adapted to a new situation (the system supports dynamic process flow “replan-
ning”) and (2) parts of the process can be “undone” and enactment can restart at an
earlier point (the system supports task “redo”). In addition, there is (3) the need for
additional activities not specified in the workflow model but nevertheless must take
place (the workflow system supports the insertion of “ad-hoc” activities).

Providing support for replanning, redo and ad-hoc activities constitutes our base-
line support for providing flexibility by dynamic adaptation of running workflow in-
stances. For workflow adaptation, we distinguish five ways (operators) in which the
routing of cases along tasks can be changed:

Extend – Adding new tasks to the flow which (1) can be executed in parallel, (2)
offer new alternatives (tasks), or (3) are executed in-between existing tasks;

Replace – A task is replaced by another task or an activity (i.e., refinement), or a
complete region (activity flow) is replaced by another region (activity flow);

Reorder – Changing the order in which tasks are executed without adding new
tasks, e.g., swapping tasks or making a process more or less parallel;

76 R.S. Barga and J. Shan

Remove – Removal of tasks or the removal of a complete region from the work-
flow. Note, that task execution can be deferred using the reorder feature;

Redo – One or more completed activities in the instance are “undone” and enact-
ment is restarted from an earlier point in the workflow model.

Fig. 2. Runtime alteration of an active workflow instance

2.4 User Visibility into Every Action

Users track and interact with business processes at a detailed level. They may review
and scrutinize every message sent and received – they need to be aware of every state
transition. The most basic requirement here for interactive enactment is that the state
of a business process may be tracked by the system and be queriable. However, there
is a little more to it than that. To support interactivity, the results returned when one
queries the state of a process must make sense to the end user. The results must be in
terms of actions and process state that the user will recognize. This allows develop-
ment of a user interface that is driven by the process definitions themselves. The cur-
rent process state and expected user actions can be rendered by reflecting on the proc-
ess definitions and current process state. This is a requirement if one hopes to be able
to support many different process definitions with a single visual tool. So it seems
natural to define processes using a single model that drives both process execution
and end-user visualization.

2.5 Correlation and Storage

Actions and communications that take place within the scope of a business process
need to be correlated into a common process context. Correlation needs to handle
both structured messages and unstructured correspondence. Structured messages are
generally business documents that are exchanged between partners – for example, a
purchase order. Structured messages could also be used for intra-company communi-

Alternate activities

Flow replanning

Replay

 Flexible Coordination of E-Services 77

cation – for example, an approval form. Structured messages also have embedded
context information that can be used for automatic correlation into the correct process
context – for example, “processed” or “agreementID” fields. In contrast, unstructured
correspondence is generated by information workers as free-form emails, faxes and
notes. Unstructured correspondence is generally not computer readable and lacks the
embedded context information needed for automatic correlation. Despite these limita-
tions, unstructured correspondence plays a vital role in interactive business process
enactment and must be supported within those processes.

2.6 Implementation Approach

To address the challenges of supporting the functional requirements of interactive
workflow enactment, we are pursuing a rule-based approach for dynamic adaptation
and runtime verification of correctness constraints (business rules). Our current sys-
tem design includes distinct functional modules that extend the underlying workflow
engine. First, a monitoring module listens to workflow data and control events raised
by the workflow engine and determines which events represent adaptation or excep-
tion events. Second, there is a control module that is responsible for determining
which workflow instances are affected by the event. Third, there is an adaptation
module responsible for modifying the affected workflow instances, possibly removing
or inserting activities, or presenting alternate activities for exception handling, so the
workflow instance can better cope with the new situation. Finally, a monitoring mod-
ule is responsible for checking whether the assumptions of the adaptation module are
matched when the adapted workflow is executed (business rules and process correct-
ness rule verification). We chose this modular architecture to provide a separation of
concerns, dividing distinct logical functionality into different modules, thus allowing
the replacement and further refinement of individual modules as we apply our ap-
proach to different application domains.

3 Refining and Extending the Model

In summary, the more innovative aspects of our proposed extensions for workflow
enactment are: i) support for low fidelity models, ii) interactive process enactment,
which allows information workers to participate in interpreting the model at runtime
and possibly define activities on the fly with rich UI support, and iii) automatic en-
forcement of correctness guarantees to ensure that the workflow generated at runtime
matches the business constraints.

There are many details behind our approach and underlying runtime that we could
not cover in this paper. One area we are actively pursuing is the definition and en-
forcement of correctness guarantees. Currently we enforce data dependencies be-
tween activities and the execution of activities through the use of guards and con-
straints. In addition, we enforce correctness constraints (named predicates) on
activity execution at runtime, but are still exploring alternatives for the specification
and runtime enforcement of correctness for the complete business process (flow).

78 R.S. Barga and J. Shan

4 A Comparison with Related Work

Dynamic change in workflow management systems, as well as correctness issues re-
lated to it, was first proposed in [EKR95]. Since then, the importance of flexibility in
workflow systems has been widely recognized [Casati98, BDK99, RD98, HSB98,
WASA, NUTT96, GSB+00, HSW01]. A classification of pas work in the area of
adaptive workflow is given in [HSB98]. Recently, with the rapid development of web
services, the dynamic character of these systems demands even more flexibility from
its underlying workflow engine [CIJ+00, BDS+02].

In general, there are two approaches towards dynamic workflow adaptation. The
first approach is to predefine the entire process. Schema changes are realized through
either a set of primitives [RD98, Casati98, HK96] or late-binding/open-points tech-
nique [GSB+00]. The second approach is to apply soft constraints, typically defined
as rules, to guide the workflow [ZFC+02, OYP03]. The latter approach does not re-
quire the workflow designer to figure out every detail in advance; hence, it allows
more flexibility. Our model takes the latter approach to provide dynamic workflow
adaptation.

WIDE [Casati98] and ADEPT [RD98] both proposed a set of primitives to realize
schema evolutions. ECA rules are used in WIDE to handle expected exceptions.
OPERA [HG98, HG00] applies programming language concepts to workflow systems
with a focus on the execution environment. All these approaches assume the work-
flow schema is predefined. As a contrast, in our approach there is no complete speci-
fication of the entire workflow at design time. The flow is defined gradually at run
time by allowing user-specified rules.

In CMI [GSB00], process templates and placeholders are used during design time
to allow further specification and extension at run time. However, the input and out-
put signature of the placeholder is fixed, which limits flexibility. In contrast, our ap-
proach allows new rules to be added at any point and the resulting structure changes
are transparent to users.

E-service compositions are modeled as processes in workflow systems. The dy-
namic nature of web services requires more flexibility than traditional workflows. In
eFlow [CIJ +00], dynamic adaptation is realized through generic nodes and service
selection rules. Their adaptation focuses more on the dynamic selection of service
providers rather than the dynamic change in process schema as in our model. In
[BDS+02], service compositions are represented in a state chart. Each process is exe-
cuted in a decentralized environment. A rule engine is used in [OYP03] to govern and
guide service composition processes. However, no detail implementation of schema
evolution is given.

References

[CIJ+00] Adaptive and Dynamic Service Composition in eFlow by Fabio Casati, Ski Il-
nicki, Lijie Jin, Vasudev Krishnamoorthy, Ming-Chien Shan, Hewlett-Packard
Tech Report 2000.

[Casati98] Models, Semantics and Formal Methods for the design of workflows and their ex-
ceptions by Fabio Casati, PhD thesis, 1998.

 Flexible Coordination of E-Services 79

[EKR95] Dynamic Change within Workflow Systems by Clarence Ellis, Karim Keddara and
Grzegorz Rozenberg COOCS 95.

[EL95] Workflow Activity Model WAMO, Johann Eder and Walter Liebhart CoopIS 95.
[OYP03] A Framework for Business Rule Driver Service Composition, by Bart Orriens, Jian

Yang, and Mike P. Papazoglou, TES-03.
[RD98] ADEPTflex – Supporting Dynamic Changes of Workflows Without Loosing Con-

trol, by Manfred Reichert and Peter Dadam, Journal of Intelligent Information Sys-
tems March/April 1998.

[JH99] Managing Evolving Workflow Specifications with Schema Versioning and Migra-
tion Rules, Gregor Joeris and Otthein Herzog, TZI Technical Report 1999.

[Jorg01] Interaction as a Framework for Flexible Workflow. Havard D. Jorgensen, Pro-
ceedings of 2001 International ACM SIGGROUP Conference on Supporting
Group Work, 2001.

[HG98] Flexible Exception Handling in the OPERA Process Support System by Claus
Hagen and Gustavo Alonso, ICDCS’98.

[HG00] Exception Handling in Workflow Management Systems, by Claus Hagen and Gus-
tavo Alonso, IEEE Transactions on Software Engineering Oct 2000.

[HSB98] A Taxonomy of Adaptive Workflow Management, by Yanbo Han, Amit Sheth and
Christopher Bussler, CSCW98.

[GSB+00] Managing Escalation of Collaboration Processes in Crisis Mitigation Situations
Dimitrios Georgakopoulos, Hans Schuster, Donald Baker and Andrzej Cichocki,
ICDE’00.

[BDK99] Towards Adaptive Workflow Systems, CSCW-98 Workshop Report. By Abraham
Bernstein, Chrysanthos Dellarocas and Mark Klein. SIGMOD Record 28,1999.

[WASA] Weske, M.: Flexible Modeling and Execution of Workflow Activities. Technical Report
Angewandte Mathematik und Informatik 08/97-I, University of Muenster, 1997.
(http://dbms.uni-muenster.de/menu.php3?item=projects&page='wasa/index.php3?id=1').

[NUTT96] The evolution toward flexible workflow systems (1996) by Gary J. Nutt.
[HK96] ObjectFlow: Towards a process management infrastructure, by Hsu and Kleissner,

Distributed and Parallel Databases 1996.
[HSW01] Flexible Workflow Management in the OPENflow System, by J.J. Halliday, S. K.

Shrivastava and S. M. Wheater, IEEE International Enterprise Distributed Object
Computing Conference, EDOC’01.

[BDS+02] Declarative Composition and Peer-to-Peer Provisioning of Dynamic Web Services,
Boualem Benatallah, Marlon Dumas, Quan Z. Sheng and Anne H.H.Ngu,
ICDE’02.

[ZFC+02] PLMflow – Dynamic Business Process Composition and Execution by Rule
Inference, by Liangzhao Zeng, David Flaxer, Henry Change and Jun-Jang Jeng.
TES 2002.

ESC: A Tool for Automatic Composition of
e-Services Based on Logics of Programs

Daniela Berardi1, Diego Calvanese2, Giuseppe De Giacomo1,
Maurizio Lenzerini1, and Massimo Mecella1

1 Università di Roma “La Sapienza”,
Dipartimento di Informatica e Sistemistica “Antonio Ruberti”,

Via Salaria 113, 00198 Roma, Italy
{berardi, degiacomo, lenzerini, mecella}@dis.uniroma1.it

2 Libera Università di Bolzano/Bozen,
Facoltà di Scienze e Tecnologie Informatiche,

Piazza Domenicani 3, 39100 Bolzano/Bozen, Italy
calvanese@inf.unibz.it

Abstract. In this paper we discuss an effective technique for automatic
service composition and we present the prototype software that imple-
ments it. In particular, we characterize the behavior of a service in terms
of a finite state machine. In this setting we discuss a technique based
on satisfiability in a variant of Propositional Dynamic Logic that solves
the automatic composition problem. Specifically, given (i) a client spec-
ification of his desired service, i.e., the service he would like to interact
with, and (ii) a set of available services, our technique synthesizes the
orchestration schema of a composite service that uses only the available
services and fully realizes the client specification. The developed system is
an open-source software tool, called ESC (e-service composer), that im-
plements our composition technique starting from services, each of them
described in terms of a WSDL specification and a behavioral description
expressed in any language that can capture finite state machines.

1 Introduction

One of the basic aspects of the Service Oriented Computing, and of the Ex-
tended Service Oriented Architecture proposed by [19], is the composition of
services. Basically, service composition addresses the situation when a client
request cannot be satisfied by any (single) available service, but a composite
service, obtained by combining “parts of” available component services, might
be used [18, 11, 7].

Service composition involves two different issues. The first, referred to as
composition synthesis is concerned with synthesizing such a new composite ser-
vice, thus producing a specification of how to coordinate the component services
to obtain the composite service. Such a specification can be obtained either
automatically, i.e., using a tool that implements a composition algorithm, or

M.-C. Shan et al. (Eds.): TES 2004, LNCS 3324, pp. 80–94, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

ESC: A Tool for Automatic Composition 81

manually by a human, possibly with the help of CASE-like tools. In what fol-
lows, we will refer to such a specification of the composite service as orchestration
schema, according to [1]. The second issue, referred to as orchestration, is con-
cerned with coordinating, during the composite service execution, the various
component services according to the orchestration schema previously synthe-
sized, and also monitoring control and data flow among the involved services, in
order to guarantee the correct execution of the composite service. Such activities
are performed by the orchestration engine [1].

It has been argued [19, 1], that in order to be able to automatically synthe-
size a composite service starting from available ones, the available services should
provide rich service descriptions, consisting of (i) interface, (ii) capabilities, (iii)
behavior, and (iv) quality. In particular, the service interface description pub-
lishes the service signature3, while the service capability description states the
conceptual purpose and expected results of the service. The (expected) behavior
of a service during its execution is described by its service behavior description.
Finally, the Quality of Service (QoS) description publishes important functional
and non-functional service quality attributes4.

Several works in the service literature (refer to [17] for a survey) address the
problem of service composition in a framework where services are represented in
terms of their (static) interface. The aim of this work is twofold: first, we discuss
an effective technique for automatic service composition, when services are char-
acterized in terms of their behavior, and then we present the prototype design
and development of an open source software tool implementing our composition
technique, namely ESC (e-service composer)5.

In [8, 7] we have devised a framework where services export their behavior as
finite state machines, and in [7] we have developed an algorithm that, given (i) a
client specification of his desired service, i.e., the service he would like to interact
with, and (ii) a set of available services, synthesizes the orchestration schema
of a composite service that uses only the available services and fully realizes
the client specification. We have also studied the computational complexity of
our algorithm: it runs in exponential time with respect to the size of the input
state machines. Observe that, it is easy to come up with examples in which
the orchestration schema is exponential in the size of the component services.
However, practical experimentation conducted over some real cases with the
prototype, shows that, given the complexity of the behavior of real services, the
tool can effectively build a composite service.

Although some papers have already been published that discuss either behav-
ioral models of services ([17]), or propose algorithms for computing composition

3 E.g., as a WSDL file.
4 E.g., service metering and cost, performance metrics (e.g., response time), security

attributes, (transactional) integrity, reliability, scalability, availability, etc.
5 cf. the paride (process-based framework for composition and orchestration of

dynamic e-services) Open Source Project: http://sourceforge.net/projects/
paride/ that is the general framework in which we intend to release the various
prototypes produced by our research.

82 D. Berardi et al.

(e.g., [18, 11, 20]), to the best of our knowledge, our research is the first one tack-
ling simultaneously the following issues: (i) presenting a formal framework where
the problem of service composition is precisely characterized, (ii) providing tech-
niques for automatically computing service composition in the case of services
represented as finite state machines and, (iii) implementing our composition
technique into an effective software tool.

The rest of the paper is organized as follows. In Section 2 we discuss our
framework for services that export their behavior. In Section 3 we present our
technique for automatic service composition. In Section 4 we describe our tool.
Finally, in Section 5 we draw conclusions and discuss future work.

2 General Framework

A service is a software artifact that interacts with its client and possibly other
services in order to perform a specified task. A client can be either a human
or a software application. When executed, a service performs a given task by
executing certain actions in coordination with the client.

We characterize the exported behavior of a service by means of an execution
tree. The nodes of such a tree represent the sequence of actions that have been
performed so far by the service, while the successor nodes represent the actions
that can be performed next at the current point of the computation. Observe
that in such an execution tree, for each node we can have at most one successor
node for each action. The root represents the initial state of the computation
performed by the service, when no action have been executed yet. We label the
nodes that correspond to completed execution of the service as “final”, with the
intended meaning that in these nodes the service can (legally) terminate.

We concentrate on services whose behavior can be represented using a fi-
nite number of states. We do not consider any specific representation formalism
for representing such states (such as action languages, situation calculus, state-
charts, etc.). Instead, we use directly deterministic finite state machines (i.e.,
deterministic and finite labeled transition systems). FSMs can capture an inter-
esting class of services, that are able to carry on rather complex interactions with
their clients, performing useful tasks. Moreover, several papers in the service lit-
erature adopt FSMs as the basic model of exported behavior of services [17, 1].
Also, FSMs constitute the core of statecharts, which are one of the main com-
ponents of UML and are becoming a widely used formalism for specifying the
dynamic behavior of entities.

The alphabet of the FSM (i.e., of the symbol labeling transitions) is formed
by the actions that the service can execute. Such actions are the abstractions of
the effective input/output messages and operations offered by the service. As an
example, consider a service that allows for searching and listening to mp3 files;
in particular, the client may choose to search for a song by specifying either its
author(s) or its title (action search by author and search by title, respec-
tively). Then the client selects and listens to a song (action listen). Finally,
the client chooses whether to perform those actions again. The WSDL interface

ESC: A Tool for Automatic Composition 83

of this service and the finite state machine describing its behavior are reported
in Figure 16.

To represent the set of services available to a client, we introduce the notion
of community C of services, which is a (finite) set of services that share a com-
mon (finite) set of actions Σ, also called the alphabet of the community. Hence,
to join a community, a service needs to export its behavior in terms of the al-
phabet of the community. From a more practical point of view, a community
can be seen as the set of all services whose descriptions are stored in a repos-
itory. We assume that all such service descriptions have been produced on the
basis of a common and agreed upon reference alphabet/semantics. This is not
a restrictive hypothesis, as many scenarios of cooperative information systems,
e.g., e-Government [4] or e-Business [12] ones, consider preliminary agreements
on underlying ontologies, yet yielding a high degree of dynamism and flexibility.

Given a service Ai, the execution tree T (Ai) generated by Ai is the execution
tree containing one node for each sequence of actions obtained by following (in
any possible way) the transitions of Ai, and annotating as final those nodes
corresponding to the traversal of final states.

When a client requests a certain service from a service community, there may
be no service in the community that can deliver it directly. However, it may be
possible to suitably orchestrate (i.e., coordinate the execution of) the services of
the community so as to provide the client with his desired service. In other words,
there may be an orchestration that coordinates the services in the community,
and that realizes the client desired service.

Formally, let the community C be formed by n services A1, . . . , An. An or-
chestration schema O of the services in C can be formalized as an orchestration
tree T (O):

– The root ε of the tree represents the fact that no action has been executed yet.
– Each node x in the orchestration tree T (O) represents the history up to now,

i.e., the sequence of actions as orchestrated so far.
– For every action a belonging to the alphabet Σ of the community and

I ∈ [1..n] 7 (1, . . . , n stand for the services A1, . . . , An, respectively), T (O)
contains at most one8 successor node x·(a, I).

6 Final nodes are represented by two concentric circles.
7 We use [i..j] to denote the set {i, . . . , j}.
8 Note that in our framework we focus on actions that a service may execute. There-

fore, at this level of abstraction each action has a well-determined functionality.
Observe also that we have avoided introducing data at the level of abstraction pre-
sented in this paper: in this way the complexity which is intrinsic in the data does
not have a disruptive impact on the complexity which is intrinsic in the process. In
fact, introducing data in a naive way is possible in our setting (e.g., by encoding
data within the state) but it would make composition exponential in the data. This
is considered unacceptable: the size of data is typically huge (wrt the size of the ser-
vices) and therefore the composition should be kept polynomial in the data. In the
future we will study how to add data to our framework by taking such observations
into account.

84 D. Berardi et al.

<definitions ...
xmlns:y="http://new.thiswebservice.namespace"
targetNamespace="http://new.thiswebservice.namespace">

<!-- Types -->
<types>

<element name="ListOfSong_Type">
<complexType>

<sequence>
<element minOccurs="1"

maxOccurs="unbound"
name="SongTitle"
type="xs:string"/>

</sequence>
</complexType>

</element>
</types>

<!-- Messages -->
<message name="search_by_title_request">

<part name="containedInTitle" type="xs:string"/>
</message>
<message name="search_by_title_response">

<part name="matchingSongs" xsi:type="ListOfSong_Type"/>
</message>
<message name="search_by_author_request">

<part name="authorName" type="xs:string"/>
</message>
<message name="search_by_author_response">

<part name="matchingSongs" xsi:type="ListOfSong_Type"/>
</message>
<message name="listen_request">

<part name="selectedSong" type="xs:string"/>
</message>
<message name="listen_response">

<part name="MP3fileURL" type="xs:string"/>
</message>

<!-- Service and Operations -->
<portType name="MP3ServiceType">

<operation name="search_by_title">
<input message="y:search_by_title_request"/>
<output message="y:search_by_title_response"/>

</operation>
<operation name="search_by_author">

<input message="y:search_by_author_request"/>
<output message="y:search_by_author_response"/>

</operation>
<operation name="listen">

<input message="y:listen_request"/>
<output message="y:listen_response"/>

</operation>
</portType>

</definitions>

(a) WSDL
a

t

l

t = search by title

l = listen

a = search by author

(b) FSM

Fig. 1. The mp3 service

ESC: A Tool for Automatic Composition 85

a t

l

t

l

a

l

l

x5

x8x7

x2

a = search by author

t = search by title

l = listen

...
...

...

x4

ε

x1

x3

x6

Fig. 2. Client specification as a tree

– Some nodes of the orchestration tree are annotated as final : when a node is
final, and only then, the orchestration can be legally stopped.

– We call a pair (x, x·(a, I)) an edge of the tree. Each edge (x, x·(a, I))
of T (O) is labeled by a pair (a, I), where a is the orchestrated action,
I ∈ [1..n] denotes the nonempty set of services in C that execute the
action.
As an example, the label (a, {1, 3}) means that the action a requested by the
client is executed by, more precisely delegated to, the services A1 and A3.

Given an orchestration tree T (O) and a path p in T (O) starting from the
root, we call the projection of p on a service Ai the path obtained from p by
removing each edge whose label (a, I) is such that i �∈ {I}, and collapsing start
and end node of each removed edge.

We say that an orchestration O is coherent with a community C if for each
path p in T (O) from the root to a node x and for each service Ai of C, the
projection of p on Ai is a path in the execution tree T (Ai) from the root to some
node y, and moreover, if x is final in T (O), then y is final in T (Ai).

In our framework, we define client specification a specification of the or-
chestration tree according to the client desired service. Of the orchestration
tree, the client only specifies the actions he would like to be executed by the
desired service. Figure 2 shows a (portion of an infinite) orchestration tree
representing the client specification: note that the edges of the tree are la-
beled only by actions. The client specification can be realized by an orches-
tration tree only if it is possible to find a suitable labeling for each action
with a non empty set I of (identifiers of) services that can execute it. In this

86 D. Berardi et al.

a

l

a = search by author

t = search by title

l = listen

(a) FSM for A1

t

l

(b) FSM for A2

Fig. 3. Services in the community

(l, {2})

(l, {1})

(a, {1})

(t, {2})

Fig. 4. Composition of A0 wrt A1 and A2

work, we consider specifications that can be expressed using a finite number
of states, i.e., as FSMs.

Given a community C of services, and a client specification A0, the problem
of composition existence is the problem of checking whether there exists an
orchestration schema that is coherent with C and that realizes A0. The problem
of composition synthesis is the problem of synthesizing an orchestration schema
that is coherent with C and that realizes A0.

Since we are considering services that have a finite number of states, we would
like also to have an orchestration schema that can be represented with a finite
number of states, i.e., as a Mealy FSM (MFSM), in which the output alphabet
is used to denote which services execute which action.

As an example, consider the case in which the service community is con-
stituted by two services, A1 and A2, whose behaviors/FSMs are shown in Fig-
ure 3. A1 allows for searching for a song by specifying its author(s) and for
listening to the song selected by the client; then, it allows for executing these
actions again. A2 behaves like A1, but it allows for retrieving a song by spec-
ifying its title.

If the client specification is the FSM shown in Figure 1(b)9, then a composi-
tion exists, and its orchestration schema is the Mealy FSM shown in Figure 4, in
which all the actions requested by the client are delegated to services of the com-
munity. In particular, the execution of search by author action and its subse-
quent listen action are delegated to A1, and the execution of search by title
action and its subsequent listen action to A2.

9 Note that it compactly represents the tree in Figure 2.

ESC: A Tool for Automatic Composition 87

3 Automatic Service Composition

In the framework presented in the previous section, we are interested in knowing
whether: (i) it is always possible to check the existence of a composition; (ii) if
a composition exists, there exists an orchestration schema which is a finite state
machine, i.e., a finite state composition; (iii) if a finite state composition exists,
how to compute it. Our approach is based on reformulating the problem of ser-
vice composition in terms of satisfiability of a suitable formula of Deterministic
Propositional Dynamic Logic (DPDL [15]), a well-known logic of programs de-
veloped to verify properties of program schemas. DPDL enjoys three properties
of particular interest: (i) the tree model property, which says that every model
of a formula can be unwound to a (possibly infinite) tree-shaped model; (ii) the
small model property, which says that every satisfiable formula admits a finite
model whose size is at most exponential in the size of the formula itself; (iii) the
EXPTIME-completeness of satisfiability in DPDL.

We represent the FSMs of both the client specification A0 and the services
A1, . . . , An of community C, as a suitable DPDL formula Φ. Intuitively, for each
service Ai, i = 0 . . . n, involved in the composition, Φ encodes (i) its current
state, and in particular whether Ai is in a final state, and (ii) the transitions
that Ai can and cannot perform, and in particular which component service(s)
performed a transition. Additionally, Φ captures the following constraints: (i)
initially all services are in their initial state, (ii) at each step at least one of the
component FSM has moved, (iii) when the desired service is in a final state also
all component services must be in a final state.

The following results hold [7, 6]:

1. From the tree model property, the DPDL formula Φ is satisfiable if and only
if there exists a composition of A0 wrt A1, . . . , An.

2. From the small model property, if there exists a composition of A0 wrt
A1, . . . , An, then there exists one which is a MFSM of size which is at most
exponential in the size of the schemas of A0, A1, . . . , An.

3. From the EXPTIME-completeness of satisfiability in DPDL and from point
1 above, checking the existence of a service composition can be done in
EXPTIME.

As an example, we can encode in a DPDL formula φ both the client spec-
ification shown in Figure 1(b) and the services in the community of Figure 3.
Then we can use a DPDL tableaux algorithm to verify the satisfiability of φ.
Such an algorithm returns a model that corresponds to the composition shown
in Figure 4 (cf. [6]).

4 The Service Composition Tool ESC
In this section we discuss the prototype tool ESC that we developed to compute
automatic service composition in our framework.

Figure 5 shows the high level architecture for ESC. We assume to have a
repository of services, where each service is specified in terms of both its static

88 D. Berardi et al.

descriptions of client

services in the
community

FSM of
composition

Abstraction

Module

FSM minimizer)

(DPDL SAT +

Synthesis Engine

Realization

Module

service FSMs

WSDL + behavioral

desired service

BPEL4WS spec
of composite service
to be enacted
by the Orchestrator

WSDL + behavioral
descriptions of

Fig. 5. The Service Composition Architecture

interface, through a WSDL document, and its behavioral description, which can
be expressed in any language that allows to express a finite state machine (e.g.,
Web Service Conversation Language [13], Web Service Transition Language [9],
BPEL4WS [2], etc.). The repository implements the community of services and
can be seen, therefore, as an advanced version of UDDI. The client specifies his
desired service in terms of a WSDL document and of its behavioral description,
again expressed using one of the language mentioned before10. Both the ser-
vices in the repository and the client desired service are then abstracted into
the corresponding FMS (Abstraction Module). The Synthesis Engine is the
core module of ESC. It takes in input such FSMs, processes them according to
our composition technique and produces in output the MFSM of the composite
service, where each action is annotated with (the identifier of) the component
service(s) that executes it. Finally, such abstract version of the composite ser-
vice is realized into a BPEL4WS specification (Realization Module), that can
be executed by an orchestration engine, i.e., a software module that suitably
coordinates the execution of the component e-Services participating to the com-
position.

The implementation of the Abstraction Module depends on which language
is used to represent the behavioral description of services.11 In the current proto-
type we have considered Web Service Transition Language, which can be trans-
lated into FSMs [9]. Therefore, (for the moment) the abstraction module can
deal only with it.

10 We assume that the behavioral description of both the client specification and the
services in the repository are expressed in the same language.

11 In particular, the Abstraction Module is constituted by one submodule for each
language used to specify a behavioral description as FSM. Such submodules can be
easily plugged-in each time a new language is used.

ESC: A Tool for Automatic Composition 89

Fig. 6. Sub-modules of the Synthesis Engine

In the next subsections we will explain in detail the implementation of the
Synthesis Engine and of the Realization Module.

4.1 Implementation of the Synthesis Engine Module

From a practical point of view, in order to actually build a finite state com-
position, we resort to Description Logics (DLs [3]), because of the well known
correspondence between Propositional Dynamic Logic formulas (which DPDL
belongs to) and DL knowledge bases. Tableaux algorithms for DLs have been
widely studied in the literature, therefore, one can use current highly optimized
DL-based systems [16, 14] to check the existence of service compositions. How-
ever, such the state-of-the-art DL reasoning systems cannot be used to build a
finite state composition because they do not return a model. Therefore, we de-
veloped our ESC that, implementing a tableau algorithm for DL, builds a model
(of the DL knowledge base that encodes the specific composition problem) which
is a finite state composition. For our purpose the well-known ALC [3], equipped
with the ability of expressing axioms, suffices.

The various functionalities of the Synthesis Engine are implemented into
three Java sub-modules, as shown in Figure 6.

– The FSM2ALC Translator module takes in input the FSMs produced by the
Abstraction Module, and translates them into an ALC knowledge base,
following the encoding presented in [5].

– The ALC Tableau Algorithm module implements the standard tableau al-
gorithm for ALC (cf., e.g., [10]): it verifies if the composition exists and if
this is the case, it returns a model, which is a finite state machine.

– The Minimizer module minimizes the model, since it may contain states
which are unreachable or unnecessary. Classical minimization techniques can
be used, in particular, we implemented the Implication Chart Method [21].
The minimized FSM is then converted into a Mealy FSM, where each action
is annotated with the service in the repository that executes it.

Since these three modules are in effect independent, they are wrapped into
an additional module, the Composer, which also provides the user interface.

90 D. Berardi et al.

4.2 Implementation of the Realization Module

The technique for realizing an executable BPEL4WS file (i.e., an executable
orchestration schema) starting from the automatically synthesized MFSM is as
follows:

– Each transition in the MFSM corresponds to a BPEL4WS pattern consisting
of (i) an <onMessage> operation (in order to wait for the input from the
client of the composite service), (ii) followed by an invocation to the effective
service (i.e., the deployed service that executes the operation), and then (iii)
a final operation for returning the result to the client. Of course both before
invoking the effective service and before returning the result, messages should
be copied forth and back between the composite and the effective service. As
an example, Figure 7 shows the BPEL4WS code corresponding to the MSFM
transition for the listen operation relative to the MFSM of Figure 4.

– All the transitions originating from the same state are collected in a <pick>
operation, having as many <onMessage> clauses as transitions originating
from the state.

– The BPEL4WS file is built visiting the graph of the MFSM in depth, starting
from the initial state and applying the previous rules, so that the nesting on
pick and sequence operations reproduces the automata behavior. In Figure
8 it is shown the pseudo-code12 of the whole BPEL4WS file obtained by the
MFSM of Figure 4.

The BPEL4WS files thus produced can be deployed and executed onto stan-
dard BPEL4WS orchestration engines. In particular, we have tested such files
using Collaxa BPEL Server 2.013.

5 Final Remarks and Future Work

In this paper we have presented ESC, a prototype tool for automatic composi-
tion, which starting from a client specification and a set of available services,
synthesizes a finite state composition.

We are currently extending our framework by allowing some advanced forms
of non-determinism in the client specification and we are studying automatic
composition techniques in this enhanced framework. In the future, we plan to
produce a new version of our prototype tool that takes such extensions into
account.

Finally, far-reaching future work may be identified along several directions.
First of all, it could be interesting to study the situation when the available
services export a partial description of their behavior, i.e., they are represented
by non deterministic FSMs. This means that, a large (possibly infinite) number

12 For sake of simplicity, we omit all BPEL4WS details and provide an intuitive, yet
complete skeleton of the BPEL4WS file.

13 cf. http://www.collaxa.com.

ESC: A Tool for Automatic Composition 91

<?xml version="1.0" encoding="UTF-8"?>
<process ... >

<partnerLinks>
<!-- The ’client’ role represents the requester of this service. It is used for callback.

In our case it is the client of the composite service -->
<partnerLink name="client"

partnerLinkType="tns:Transition"
myRole="MP3ServiceTypeProvider"
partnerRole="MP3ServiceTypeRequester"/>

<partnerLink name="service"
partnerLinkType="nws:MP3CompositeService"
myRole="MP3ServiceTypeRequester"
partnerRole="MP3ServiceTypeProvider"/>

</partnerLinks>

<variables>
<!-- Reference to the message passed as input during initiation -->

<variable name="input" messageType="tns:listen_request"/>
<!-- Reference to the message that will be sent back to the

requestor during callback -->
<variable name="output" messageType="tns:listen_response"/>
<variable name="request" messageType="nws:listen_request"/>
<variable name="response" messageType="nws:listen_response"/>

</variables>

<pick>
<onMessage partnerLink="client"

portType="tns:MP3ServiceType"
operation="listen"
variable="input">
<sequence>

<assign>
<copy>

<from variable="input" part="selectedSong"/>
<to variable="request" part="selectedSong"/>

</copy>
</assign>
<invoke partnerLink="service"

portType="nws:MP3ServiceType"
operation="listen"
inputVariable="request"
outputVariable="response"/>

<assign>
<copy>

<from variable="response" part="MP3FileURL"/>
<to variable="output" part="MP3FileURL"/>

</copy>
</assign>
<reply name="replyOutput"

partnerLink="client"
portType="tns:MP3ServiceType"
operation="listen"
variable="output"/>

<!-- Other operations here for describing the next transitions -->
</sequence>

</onMessage>
<onMessage>
<!-- Other sequences here for describing the other possible transitions originating

from the same state -->
</onMessage>

</pick>
</process>

Fig. 7. BPEL4WS code for the listen transition of the MFSM shown in Figure 4

92 D. Berardi et al.

<process>
<pick>

<onMessage="t">
<sequence>

<copy>...</copy>
<invoke operation="t" on service A2 />
<copy>...</copy>
<reply ... />
<pick>

<onMessage="l">
<sequence>

<copy>...</copy>
<invoke operation="l" on service A2 />
<copy>...</copy>
<reply ... />

</sequence>
</onMessage>

</pick>
</sequence>

</onMessage>
<onMessage="a">

<sequence>
<copy>...</copy>
<invoke operation="a" on service A1 />
<copy>...</copy>
<reply ... />
<pick>

<onMessage="l">
<sequence>

<copy>...</copy>
<invoke operation="l" on service A1 />
<copy>...</copy>
<reply ... />

</sequence>
</onMessage>

</pick>
</sequence>

</onMessage>
</pick>

<process>

Fig. 8. BPEL4WS pseudo-code for the MFSM shown in Figure 4

of complete description for services in the community exists that are coherent
with each partial description. In such case, the orchestration schema that is to
be synthesized should be coherent with all such possible complete descriptions.
Therefore, computing composition in such a framework is intuitively much more
difficult that in the framework presented here.

Also it is interesting to study how to add data in our framework and how this
impacts the automatic service composition. In particular, it is worth studying
how to introduce data in a way that the problem of automatic service composi-
tion, while exponential in the size of the service description, remains polynomial
in the size of the data.

Finally, we foresee the validation of our approach and an engineered imple-
mentation of the tool in the context of the eG4M (e-Government for Mediter-
ranean countries) project, in which the services offered by different Public Ad-
ministrations spread all over some Mediterranean countries will be composed
and orchestrated in order to offer value-added cooperative processes to citizens
and enterprises.

ESC: A Tool for Automatic Composition 93

Acknowledgements

This work has been supported by MIUR through the “FIRB 2001”
project MAIS (http://www.mais-project.it, Workpackage 2), and “Societá
dell’Informazione” subproject SP1 “Reti Internet: Efficienza, Integrazione e Si-
curezza”. It has been also supported by the European projects SEWASIE (IST-
2001-34825), EU-PUBLI.com (IST-2001-35217) and INTEROP Network of Ex-
cellence (IST-508011).

The authors would like also to thank Alessandro Iuliani, for collaborating in
the design and realization of the ESC tool, and Alessia Candido for her technical
support with BPEL4WS.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Concepts, Ar-
chitectures and Applications. Springer-Verlag, 2004.

2. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Ley-
mann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weer-
awarana. Business Process Execution Language for Web Services (Version 1.1).
http://www-106.ibm.com/developerworks/library/ws-bpel/, May 2004.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

4. C. Batini and M. Mecella. Enabling Italian e-Government Through a Cooperative
Architecture. IEEE Computer, 34(2), 2001.

5. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. service
Composition by Description Logic Based Reasoning. In Proceedings of the Int.
Workshop on Description Logics (DL03), Rome, Italy 2003.

6. D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella. Automatic
composition of e-services. Technical Report 22-03, Dipartimento di Informatica e
Sistemistica, Università di Roma “La Sapienza”, 2003.

7. D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella. Automatic
composition of e-services that export their behavior. In Proc. of the 1st Int. Conf.
on Service Oriented Computing (ICSOC2003), 2003.

8. D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella. A founda-
tional vision of e-services. In Proc. of the CAiSE 2003 Workshop on Web Services,
e-Business, and the Semantic Web (WES 2003), 2003.

9. D. Berardi, F. De Rosa, L. De Santis, and M. Mecella. Finite State Automata
as Conceptual Model for e-Services. In Journal of Integrated Design and Process
Science, 2004. To appear.

10. M. Buchheit, F. M. Donini, and A. Schaerf. Decidable reasoning in terminological
knowledge representation systems. J. of Artificial Intelligence Research, 1:109–138,
1993.

11. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation Specification: A New Approach
to Design and Analysis of E-Service Composition. In Proceedings of the WWW
2003 Conference, Budapest, Hungary, 2003.

12. E. Colombo, C. Francalanci, B. Pernici, P. Plebani, M. Mecella, V. De Antonel-
lis, and M. Melchiori. Cooperative Information Systems in Virtual Districts: the
VISPO Approach. IEEE Data Engineering Bulletin, 25(4), 2002.

94 D. Berardi et al.

13. A. K. H. Kuno, M. Lemon and D. Beringer. Conversations + Interfaces = Business
Logic. In Proceedings of the 2nd VLDB International Workshop on Technologies
for e-Services (VLDB-TES 2001), Rome, Italy, 2001.

14. V. Haarslev and R. Möller. RACER System Description. In Proc. of IJCAR 2001,
volume 2083 of LNAI, pages 701–705. Springer-Verlag, 2001.

15. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press, 2000.
16. I. Horrocks. The FaCT System. In H. de Swart, editor, Proc. of TABLEAUX’98,

volume 1397 of LNAI, pages 307–312. Springer-Verlag, 1998.
17. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-Services: A Look Behind

the Curtain. In Proceedings of the PODS 2003 Conference, San Diego, CA, USA,
2003.

18. S. McIlraith, T. Son, and H. Zeng. Semantic web services. IEEE Intelligent Sys-
tems, 16(2), 2001.

19. M. Papazoglou and D. Georgakopoulos. Service Oriented Computing (special is-
sue). Communications of the ACM, 46(10), October 2003.

20. M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso. Planning and
Monitoring Web Service Composition. In Proc. of ICAPS Workshop on Planning
for Web and Grid Service (P4WGS 2004), 2004.

21. R.H. Katz. Contemporany Logic Design. Benjamin Commings/Addison Wesley
Publishing Company, 1993.

Dynamically Self-Organized Service Composition
in Wireless Ad Hoc Networks

Qing Zhang1, Huiqiong Chen2, Yijun Yu3, Zhipeng Xie1, and Baile Shi1

1 Department of Computing and Information Technology, Fudan University
qzhang79@yahoo.com, {xiezp, bshi}@fudan.edu.cn
2 Faculty of Computer Science, Dalhousie University

hchen3@dal.ca
3 Department of Computer Science, University of Toronto

yijun@cs.toronto.edu

Abstract. Service composition is a powerful tool to create new services
rapidly by reusing existing ones. Previous research mainly focuses on
the wired infrastructure-based environment. With the developments in
mobile devices and wireless communication technology in recent years,
mobile ad hoc network has received an increasing attention as a new com-
munication paradigm. However, the existing service composition tech-
niques do not work any longer in an ad hoc environment. In this paper,
we present the service composition problem in wireless ad hoc network
with full consideration of the characteristics of an ad hoc environment.
To solve this problem, we develop two service composition routing al-
gorithms, Simple Broadcasting Service Composition and Behavior Evo-
lution Service Composition. The main contribution of our algorithms is
that the whole process of service composition is done by the cooperation
of nodes on-the-fly instead of a centralized broker to meet the peculiar-
ity of ad hoc networks. Finally, we describe an initial implementation
architecture for service composition in wireless ad hoc networks.

1 Introduction

Service composition refers to the technique of composing several existing services
into a meaningful, richer service to meet the changing requirements of users. A
service can be any functional program that produces corresponding output with
appropriate input. We can view a complex and dynamic task as the composition
of several basic sub-tasks, which can be completed by the cooperation of several
simpler services.

The past research in service composition [1, 4, 8] mainly focuses on composing
various services that are available over the fixed network infrastructure, where
the physical location of a service does not need too much care. Existing service
composition systems like eFlow [1], Ninja [4], and CMI [8] primarily rely on
a centralized composition engine to carry out the discovery, integration and
composition of web-based e-services [2].

M.-C. Shan et al. (Eds.): TES 2004, LNCS 3324, pp. 95–106, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

96 Q. Zhang et al.

Recent years have seen an increasing use of wireless mobile devices like mobile
phones and PDAs. The advances in mobile devices and wireless communication
technology have enabled a new communication paradigm: mobile ad hoc network.
A mobile ad hoc network is a multi-hop, self-organized wireless network where
the communication of mobile nodes can be done without the support of any
fixed infrastructure. In this new networking environment, a mobile node acts as
service provider and consumer at the same time. We can fulfill a complex task
by the cooperation of services available in our vicinity.

Here, let’s imagine a scenario in the future. Tom is chatting with his friend in an
office when his Bluetooth-enabled cell phone beeps, indicating that he receives an
email with attachment. The email says that the attachment contains some beauti-
ful photos. Tom wants to browse the photos but unfortunately the attachment is a
zipped file and his cell phone has no programs to unzip the attachment. Tom goes
into a lab nearby with the cell phone. Suppose a Bluetooth-enabled laptop and a
Bluetooth-enabled printer are provided in the lab. Tom can send the attachment
to the laptop and unzip the attachment to browse the photos. Similarly, Tom can
use the laptop to discover the printer and print the photos out.

From the example above, it can been seen that service composition in ad hoc
network works in a highly dynamic manner. A mobile node tries to complete
a task that it cannot accomplish by discovering and integrating the services in
its vicinity. The centralized architecture of service composition in fixed network
does not work any longer in ad hoc environment because we cannot find a stable
centralized node which is omniscient to know everything, then carries out the
composition of services in such a dynamic environment.

To the best of our knowledge, little work has addressed the problem associated
with service composition in an ad hoc environment except [2]. In [2], the authors
presented a distributed, de-centralized and fault-tolerant design architecture for
reactive service composition in an ad hoc environment. They introduced two
reactive techniques, “Dynamic Brokerage Selection” and “Distributed Brokerage
technique”, to accomplish service composition in dynamic environments. The
center concept to their approach is that any node can act as the broker, which
makes the design immune to single point of failure [2].

However, [2]’s approach relies too much on the node acting as broker. The
selected broker is responsible for the whole composition process for a certain
request. It first splits a task into sub-tasks to determine the necessary services,
then discovers, integrates and executes these services to complete the task. In
our opinion, the capability of a mobile node is limited while the requirement of
user is changeable. How to execute a task may not be determined beforehand
but depend on current situation, especially in a dynamic ad hoc environment.

In this paper, we deal with the problem of service composition in wireless
ad hoc networks. We give a formal definition of this problem first, which fully
considers the characteristics of an ad hoc environment (i.e. the network is chang-
ing dynamically and each mobile node only has knowledge of its current vicin-
ity). Then we develop two routing algorithms called Simple Broadcasting Service
Composition and Behavior Evolution Service Composition to solve this problem.

Dynamically Self-Organized Service Composition 97

The key idea of our algorithms is that the whole process of service composition is
dynamic and self-organized, which is done by the cooperation of nodes on-the-fly
instead of a centralized broker.

The rest of the paper is organized as follows. Section 2 gives some basic
definitions related to the problem. Section 3 presents the service composition
problem in wireless ad hoc networks formally. Section 4 proposes two service
composition routing algorithms to solve this problem. Section 5 presents an
initial implementation architecture. We conclude our work in Sect. 6.

2 Definition

Before going into the service composition problem in ad hoc networks, we give
some definitions.

Definition 1. A service S can be specified as a tuple
〈
ID, I, O, F, C

〉
, where:

ID is the unique identification of service S;
I is the input pattern of service S, any input i that matches I can be an used

as input of S;
O is the output pattern of service S, any output o that matches O can be

used as an output of S;
F is the function that service S provides, an input i can be converted to o by

F ;
C is the cost for performing service S. It is related to multi-factors, such as

the time spending in converting, the stability and battery power of current node
where S locates in etc.

Every mobile device can provide one or more services S1, S2, · · · , Sn, which can
be defined as a service set {S1, S2, · · · , Sn}.

Definition 2. Given two services, S1 = 〈ID1, I1, O1, F1, C1〉 and S2 = 〈ID2, I2,
O2, F2, C2〉, we say that S1 and S2 are k-hops range neighbors, if the mobile node
N1 where S1 locates is no more than k-hops (k ≥ 1) away from the mobile node
N2 where S2 locate, or they are the same.

Definition 3. Assume that two services, S1 = 〈ID1, I1, O1, F1, C1〉, S2 = 〈ID2,
I2, O2, F2, C2〉, are k-hops range neighbors, and o1 is an output of S1. If the
whole or part of o1 can be used as the input of S2, we say that S1 and S2 can
be completely composed in k-hops range, and the direction of the composition is
from S1 to S2. It can be denoted as S1

k→ S2, or i1S1o1S2o2 in detail, where o2
is the output of S2 that takes o1 as input.

Definition 4. Assume that two services, S1 = 〈ID1, I1, O1, F1, C1〉, S2 = 〈ID2,
I2, O2, F2, C2〉, are k-hops range neighbors, and o1 is an output of S1. If the whole
or part of o1 can be used as part of the input of S2, we say that S1 and S2 can
be partially composed in k-hops range, and the direction of the composition is
from S1 to S2. It can be denoted as S1

k
⇀ S2.

98 Q. Zhang et al.

We say S1 and S2 can be composed in k-hops range if they are completely
composed or partially composed in k-hops range.

Definition 5. Given two services, S1 = 〈ID1, I1, O1, F1, C1〉 and S2 = 〈ID2, I2,
O2, F2, C2〉. If S1 and S2 can be performed independently, we say that S1 and S2
are independent, and denote it as S1 ‖ S2.

From Definition 4 and Definition 5, we can get that:
Given services S1 = 〈ID1, I1, O1, F1, C1〉, S2 = 〈ID2, I2, O2, F2, C2〉 and S3 =

〈ID3, I3, O3, F3, C3〉, S1 ‖ S2, S1
k
⇀ S3, S2

k
⇀ S3, o1 is an output of S1, and o2 is

an output of S2. The union of o1 and o2 is denoted as o1∪o2. If the whole or part
of o1 ∪ o2 can be used as part of the input of S3, we say that the combination of
S1 and S2 can be completely composed with S3 in k-hops range, and denote it
as (S1 ∪ S2)

k→ S3.

3 Problem Statement

In this section, we present the service composition problem in wireless ad hoc
networks.

In a dynamic ad hoc environment, there are n mobile nodes, each of which
has a unique identification from id1 to idn. Every node idm (1 ≤ m ≤ n) has pm

services from Sm,1 to Sm,pm
, and idm only has knowledge (the services provided

by node) of itself and nodes within k-hops range. Now some node ids, which
we call the task initiator, starts a task t〈tid, I(i), O〉, where tid is the unique
identification of t, i is the input of t that matches pattern I, and O is the
output pattern which can be acquired when t is completed. Determine the flow
to complete task t under the following restriction and then finish the task.

– The maximal number of hops should be less than a constant H;
– The time taken by the search process should be less than a constant T .

Our definition of problem has following features:

1. It is a decentralized one. There does not exist any centralized broker, which
carries out the service composition process. Every node only has knowledge
of itself and its current vicinity.

2. For every task t, only an input i and the output pattern O need to be
provided. The services needed to complete t and the order of services are
determined on-the-fly by the cooperation of nodes, which can satisfy the
changeable requirements of users.

3. There may exist several flows to complete task t because only i and O are
provided. This gives us the chance to select a best one as the solution of the
task.

Dynamically Self-Organized Service Composition 99

4 Service Composition Routing Algorithms

In this section, we introduce two routing algorithms for service composition in
ad hoc environment: Simple Broadcasting Service Composition and Behavior
Evolution Service Composition. As we have pointed out, in [2]’s approach, the
node acting as broker is responsible for the whole composition process for a
certain request, it relies too much on the selected broker even if any node can
act as this broker. In our algorithms, the whole process of service composition
is done on-the-fly by the cooperation of nodes instead of a centralized broker,
which makes the key of our two algorithms. For the simplicity of description,
we confine our discussion in 1-hop range and omit the declaration of “in 1-hop
range” in the rest of our paper. The solution to k-hop range service composition
problem can be inferred from the solution to 1-hop range service composition
problem. The method is that each node finds its k-hop range neighbors and
treats them the same way as it does to the 1-hop range neighbors.

4.1 Simple Broadcasting Service Composition

Overview. The Simple Broadcasting Service Composition method consists of
two mechanisms: Service Composition Flow Discovery and Service Composition
Fault Recovery.

To complete a task, the task initiator should discover the services needed to
complete a task and decide the order of services, which are done by the Service
Composition Flow Discovery procedure. In this procedure, beginning from the
task initiator, a node that has service to continue task but cannot get the desired
output pattern simply broadcasts its output pattern to its neighbors as input
pattern, seeking the next node that has service to continue task. This process
repeats till the desired output pattern is acquired, then the flow to carry out the
task can be constructed and the task is executed according to the sequence of
nodes in the flow.

When a task is being executed, the task initiator should monitor the progress
of execution, which is done by the Service Composition Fault Recovery proce-
dure. Wireless ad hoc networks are less stable environment than wired networks,
where the nodes move frequently, and the power in nodes may sometimes become
insufficient. The established flow is prone to be broken. To recover from faults
occurred in the process of task execution, We adopt a fault recovery mechanism.

Service Composition Flow Discovery. We view the service composition flow
as a DAG (directed acyclic graph) made up of nodes and edges. Figure 1 illus-
trates an example of the flow. A flow node is a service in a mobile node that
can continue a task, which is denoted as the pair 〈node, service〉. A flow edge
represents the two connected services can be composed. For example, in Fig.1,
flow node 0 is a service 0 in mobile node 0; the edge between flow node 1 and
4 represents service 1 in mobile node 1 and service 4 in mobile node 3 can be
completely composed, and the edge between flow node 3 and 6 represents service
3 in mobile node 2 and service 6 in mobile node 5 can be partially composed.

100 Q. Zhang et al.

The graph starts from the flow node that can accept task input (flow start node),
which is flow node 0 in Fig.1, and ends at the flow node that can generate output
matching the desired task output pattern (flow end node), which is flow node
7 in Fig.1. In the flow, there may exist flow nodes which accept more than one
input, such as flow node 6, which means the combination of some services can
be completely composed with a service. For example, in Fig.1, the combination
of service 3 in mobile node 2 and service 5 in mobile node 4 can be completely
composed with service 6 in mobile node 5. We call this kind of node flow key
node. A route from one flow key node (or flow start node) to next flow key
node (or flow end node) is called path. In Fig.1, there are three paths, they are
0 → 1 → 2 → 3 ⇀ 6, 0 → 1 → 4 → 5 ⇀ 6, and 6 → 7. A flow can be viewed as
the composition of several paths.

<0,0>

0

<1,1>

1

<2,2>

2

<3,4>

4

<2,3>

3

<4,5>

5

<5,6>

6

<6,7>

7

Fig. 1. A Flow Example

It is the duty of Service Composition Flow Discovery procedure to construct
the flow. Now, a mobile node launch a task t〈tid, I(i), O〉 at the time T1. It
broadcasts a flow request packet to itself and its neighbors. The packet contains
the task related information 〈tid, I, O, T1〉 as well as a path record, which ac-
cumulates a sequence of 〈idk, St〈IDt, It, Ot, Ct〉〉 in a path when the packet is
propagated through the ad hoc network during the flow discovery. To prevent
cycle in a flow, each mobile node maintains a list of 〈task id, service id〉 pairs
when the node can continue a task through a service.

When a mobile node idk+1 receives a flow request packet, it processes the
request as follow:

1. Check the launch time T1 of task t. If the task is out of date, discard the
flow request packet and do not process it further.

2. Otherwise, extract the last element in the path record, say 〈idk, St〈IDt, It, Ot,
Ct〉〉, then check the services idk+1 possesses to find whether there exists a
service St+1, which can accept Ot as input, i.e. idk+1 tries to find a service
St+1, which can be composed with the last service St in the path record. If
there does not exist one, discard the flow request packet.

3. Otherwise, if St and St+1 can be composed, but the pair 〈tid, St+1〈IDt+1〉〉
already exists in idk+1’s list of 〈task id, service id〉 pairs, discard the flow
request packet.

Dynamically Self-Organized Service Composition 101

4. If St and St+1 can be completely composed, append 〈idk+1, St+1〈IDt+1, It+1,
Ot+1, Ct+1〉〉 to the path record in the flow request packet.

5. If St and St+1 can only be partially composed, wait for a given period Tw

until the time is out, or idk+1 receives several other flow request pack-
ets, the combination of the last services in each path record can be com-
pletely composed with St+1. If the time is out, discard the flow request
packet. Otherwise, 〈idk+1, St+1〈IDt+1〉〉 can be a flow key node, append
〈idk+1, St+1〈IDt+1, It+1, Ot+1, Ct+1〉〉 to the path record in each flow request
packet, and cache the list of path records. Then rebuild a new path record in
the flow request packet, which has one element 〈idk+1, St+1〈IDt+1, It+1, Ot+1,
Ct+1〉〉.

6. At this point, St+1 can be completely composed with a service (or services).
If the output pattern Ot+1 of St+1 is a superset of the desired output pattern
O of task, it means that 〈idk+1, St+1〈IDt+1, It+1, Ot+1, Ct+1〉〉 is the flow end
node, and the paths to carry out task is successfully found, return a flow reply
packet to the task initiator. Otherwise, continue the flow discovery process,
and idk+1 re-broadcast the request to itself and its neighbors.

Now, the flow end node prepares to return a flow reply packet to the task
initiator. The paths to construct the service composition flow are collected at the
same time. The flow reply packet contains six fields: a unique flow id (fid), task
id (tid), current path record, current position in path record, a list of collected
paths, and the maximal number of possible paths. The list of collected paths is
initialized with current path record, and the maximal number of possible paths is
initialized to 1. To obtain all the paths for a flow fid, the task initiator maintains
a list of received paths for each possible flow.

When a mobile node idk+1 receives a flow reply packet (or the packet is built
by itself in case that idk+1 is the flow end node or a flow key node), it processes
the request as following:

1. Provided current position in packet is 〈idk+1, St+1〈IDt+1〉〉, track the ele-
ments of current path record from current position in a regressive direction.

2. If idk+1 can find an element 〈idk, St〈IDt, It, Ot, Ct〉〉, and idk and idk+1 are
different mobile nodes, set current position to 〈idk, St〈IDt, It, Ot, Ct〉〉, and
send the flow reply packet to idk.

3. Otherwise, it means that 〈idk+1, St+1〈IDt+1〉〉 is the flow start node or a
flow key node. If 〈idk+1, St+1〈IDt+1〉〉 is a flow key node, idk+1 has the
information of a list of path records for 〈tid, St+1〈IDt+1〉〉 which has been
cached in the process of sending the flow request packet, add the number of
path records to the maximal number of possible paths. For each path, rebuild
a new flow reply packet, the new current path record is the corresponding
path record, and the new list of collected paths is the original list of collected
paths appended with the new current path record. Re-process the flow reply
packet respectively.

102 Q. Zhang et al.

4. Otherwise, 〈idk+1, St+1〈IDt+1〉〉 is the flow start node, append the list of
collected paths in the packet to the list of received paths for fid that idk+1
maintains, and remove the duplicated paths. If the number of received paths
is equal to the maximal number of possible paths, it means that all paths to
carry out task tid are reachable during the process of sending the flow reply
packet, and we call this list of received paths is valid.

In a period of time T , the task initiator may obtain several valid lists of
received paths, from which we can construct the flow to carry out the task.
Compute the total cost for each flow, select the one which has the minimal cost
as the flow to carry out the task, and then start executing task.

Service Composition Fault Recovery. During the execution of a task, the
established flow has a high probability of being broken due to the nature of
wireless networks. We need adopt a fault recovery mechanism to deal with it.

The simplest solution for this problem is to select an alternative flow, or
restart the task. Since the task initiator perhaps has received several useful
flow reply packets, and constructed more than one flow in the phase of Service
Composition Flow Discovery, we can select another inferior flow to carry out the
execution of task, or simply initiate a new Service Composition Flow Discovery
phase if the selected flow through which the task is being executed is broken.

It is clear that the method above is inefficient because failures may occur
with high probability, so we adopt a similar fault recovery mechanism as the one
described in [2], which employs a checkpoint technique to guard against failures.
After a flow node completes its subtask, it sends back its partial completion
state and the checkpoint to the task initiator. The task initiator caches this
partial result obtained so far. If a flow node fails, the task initiator can receive
no more checkpoints. It then reconstructs the task that is still left to solve, which
is treated as a new task, and restarts the new task.

4.2 Behavior Evolution Service Composition

The broadcasting method we describe above has an obvious fault: the heavy
packet overhead. When there are rich resources in the vicinity for every mobile
node, the packet overhead will be extremely heavy because every flow node tries
its best to compose with its neighbor services with no selections.

To optimize the broadcasting method, we purpose a new Behavior Evolution
Service Composition method based on it. In this method, taking full use of
the experiences (expressed by rules) acquired from previous service composition
process, every flow node tries to select a certain number of services from its
neighbor services which it can be composed with in a probabilistic approach.
Here behavior means the selection of services which a flow node can be composed
with; evolution means that the selection process can be increasingly efficient with
the accumulation of experiences.

This method consists of two mechanisms: Rule Acquirement and Rule Uti-
lization.

Dynamically Self-Organized Service Composition 103

Rule Acquirement. Every mobile node can accumulate the experiences ac-
quired from the cooperation of mobile nodes to accomplish a task. When a task
comes into the phase of being executed, let the flow for this task transferred
with the execution of task. The flow has the information of the next services to
be composed with for a certain output pattern. We treat this information as a
sign of experiences.

We can express experiences by the form of rules. For a flow node, we generate
rules according to the flow like this: the precondition of rule is the output pattern
of a flow node which is reachable from current flow node, the postcondition of
rule is the service(s) to be composed with:

St: IF O THEN {St+1〈IDt+1〉}
It means that service St is composed with {St+1〈IDt+1〉} to obtain the output
pattern O according to current flow.

We measure a rule by two metrics: confidence and age. When a rule r is
generated by a node idk, we change the confidence and age of rules in idk as
following:

– If r does not exist in idk, we set its confidence to 1. Otherwise, we increase
its confidence by one. The confidence of other rules do not change.

– No matter r exists in idk or not, we set its age to 1, and increase the age of
other rules by one.

Each node idk is given a limited space to store rules. If idk has not enough
space to store a new generated rule, we employ following rule replacement strat-
egy: To all rules in idk and the new generated rule, compute the ratio of confi-
dence to age for each rule, and discard the rule which has the minimal ratio.

Rule Utilization. To utilize the rules we have got, we make some modifications
to the phase of Service Composition Flow Discovery in broadcasting method. A
mobile node idk no longer broadcasts a flow request packet to its neighbors but
sends the packet to a certain number of selected neighbors instead. To determine
which neighbors to be selected, the mobile node broadcasts a service query packet
first. The packet contains 〈tid, idk, St〈IDt, Ot〉〉, which indicates the service in
idk to continue task.

When a mobile node idk+1 receives a service query packet, it processes the
request as following:

1. idk+1 checks the services it possesses to find a service St+1 which can be
composed with St. If there does not exist one, discard the service query
packet.

2. Otherwise, if St and St+1 can be composed, but the pair 〈tid, St+1〈IDt+1〉〉
already exists in idk+1’s list of 〈taskid, serviceid〉 pairs, discard the service
query packet.

3. Otherwise, return a service acknowledge packet to idk. The packet contains
〈idk+1, St+1〈IDt+1, Ot+1, Ct+1〉, M〉, where M indicated whether idk and
idk+1 can be completely composed or not.

104 Q. Zhang et al.

In a period of time Tq, idk may has received several return service acknowl-
edge packets. It is clear that a service can be selected if the output pattern of the
service is a superset of the desired output pattern O of task. For the remaining
services, we should make a selection from these services by utilizing the rules it
accumulates. We make the following assumptions:

1. The number of services is m.
2. There are k special rules accumulated in idk, each of these k rules has a

precondition O (i.e. the output pattern of task), and a postcondition be-
longing to these m services. We denote these k rules from r1 to rk, and their
corresponding confidence from b1 to bk.

3. There are m1 services in all postcondition of these k rules, and m2 (m2 =
m − m1) services out of these k rules.

Try to select u1 rules and corresponding services from these k rules, and
select u2 services from the m2 services with consideration of the confidence of a
rule and the cost for performing a service.

If k ≤ u1, use all k rules, u2 = u2 + u1 − k.
If m2 ≤ u2, use all m2 services.
If k > u1 or m2 > u2, we do the selection by using the probabilistic Monte

Carlo method [7] as following:

– For each rule rt: IF O THEN {St1 , St2 , ..., Stl
}, we define the weight wt of rt

as bt/
l∑

j=1
Stj

〈Ctj
〉. Then the probability of selecting services {St1 , St2 , ..., Stl

}

is wt/
k∑

i=1
wi.

– For each service St in m2 services, the probability of St being selected is

(1/St〈Ct〉)/
m2∑

j=1
(1/Sj〈Cj〉).

Now, idk has got a certain number of selected services from the services
gathered, it will send a new flow request packet to every corresponding mobile
node. The new packet contains 〈St+1〈IDt+1〉, M〉 in addition. When a mobile
node idk+1 receives the new flow request packet, it treat the request in a similar
way as the process when idk+1 receives a flow request packet, except that it is
unnecessary to do step 2 and 3 in the broadcasting method.

5 Implementation

To check the validity of our algorithms, we have implemented the basic mecha-
nism of our two service composition routing algorithms in NS2 [3] with mobility
and wireless extensions. NS2 is a discrete event network simulator developed
by the University of California, Berkeley and the VINT project. Rice Monarch
Project [9] has made substantial extensions to NS2 to allow ad hoc simulations.

For each mobile node, we use the architecture shown in Fig.2. It mainly
includes following three modules:

Dynamically Self-Organized Service Composition 105

Sevice
Repository

Service Composition
Agent

Task Request

802.11
Interface

Rule
Repository

Fig. 2. Service Composition Architecture

Service Composition Agent: The service composition agent is the core of our
architecture. It accepts the task requested by user and tries to find the service
composition flow to execute task. We have completed an initial implementation
of our two service composition methods under the framework of NS2. We also
carried out various experiments to compare these two methods by measuring
the packet overhead and task completion ratio. As we have expected, the Be-
havior Evolution Service Composition method has higher performance than the
Simple Broadcasting Service Composition method, which can reduce the packet
overhead greatly with little loss of the task completion ratio.

Service Repository: The service repository module describes the basic infor-
mation (input pattern, output pattern and function) of services a node has and
the relationship between services. Currently we simplified the representation of
service information by text string. It will be our future work to use a common
language like DAML-S (the DARPA Agent Markup Language for Service) [10]
to describe the information of a service.

Rule Repository: The rule repository module stores the rules accumulated in
the process of service composition. These rules can be used to direct the future
service composition process. Taking advantage of this feature, if we already have
the knowledge of an existing service composition flow, we can express the flow
by the form of rules with high confidence, and deposit these rules in the nodes
which have corresponding services. It will also be useful to collect and analysis
the rules accumulated in several nodes. A rule has high confidence means the
services in the rule are composed frequently. We can select the rules with high
confidence, combine these services in rules that can be composed into a new
service composition flow, and treat this flow as a new service because the services
in the flow are used together frequently. It will bring the emergence of a new
service [5].

106 Q. Zhang et al.

6 Conclusions

In this paper, we cope with the service composition problem for ad hoc networks.
By considering the features of ad hoc environment, we present the problem and
develop two service composition routing algorithms: Simple Broadcasting Service
Composition and Behavior Evolution Service Composition. In the broadcasting
method, a node which can continue a service composition task simply broadcasts
its intermediate output to its neighbors till the desired output is acquired. The
packet overhead of broadcasting method is extremely heavy. To optimize it, we
propose the behavior evolution method, which takes use of experiences accu-
mulated in previous service composition process. Finally, we present an initial
implementation architecture in NS2. It will be our future work to perfect our
system and make it work in a real world.

References

1. F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. C. Shan. Adaptive and
dynamic service composition in eflow. Proceedings of the International Conference
on Advanced Information Systems Engineering, June 2000.

2. D. Chakraborty, F. Perich, A. Joshi, T. Finin, and Y. Yesha. A reactive service
composition architecture for pervasive computing environment. 7th Personal Wire-
less Communications Conference, 2002.

3. K. Fall and K. Varadhan. The ns Manual. The VINT Project, September 2003.
4. S. D. Gribble, M. Welsh, R. V. Behren, E. A. Brewer, etc. The Ninja Architecture

for Robust Internet-Scale Systems and Services. IEEE Computer Networks Special
Issue on Pervasive Computing, March 2001, Vol 35, No. 4.

5. T. Itao, S. Tanaka, T. Suda, and T. Aoyama. Adaptive Creation of Mobile Network
Applications in the Jack-in-the-Net Architecture. Wireless Networks, the Journal
of Mobile Communication, Computation and Information, vol. 10, issue 3, pp.287-
299, May 2004.

6. D. Johnson and D. Maltz. Dynamic source routing in ad hoc wireless networks.
Mobile Computing, Kluwer Academic Publishers, 1996.

7. J. M. Pollard. Monte Carlo Methods for Index Computation (mod p). Mathematics
of Computation, July 1978.

8. H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker. Modeling and com-
posing service-based and reference process-based multi-enterprise processes. Pro-
ceedings of the International Conference on Advanced Information Systems Engi-
neering, June 2000.

9. The Rice University Monarch Project. World Wide Web,
http://www.monarch.cs.rice.edu/.

10. DARPA Agent Markup Language for Services. World Wide Web,
http://www.daml.org/services/.

M.-C. Shan et al. (Eds.): TES 2004, LNCS 3324, pp. 107 – 121, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Designing Workflow Views with Flows for
Large-Scale Business-to-Business Information Systems

 Dickson K.W. Chiu1, Zhe Shan2, Patrick C. K. Hung3, and Qing Li2

1 Dickson Computer Systems, 7A Victory Avenue 4th floor,
Homantin, Kln, Hong Kong

dicksonchiu@ieee.orga
2 Department of Computer Engineering and Information Technology,

City University of Hong Kong
{zshan0, itqli}@cityu.edu.hk

3 Faculty of Business and Information Technology,
University of Ontario Institute of Technology, Canada

patrick.hung@uoit.ca

Abstract. Workflow technology has recently been employed as a framework
for implementing large-scale business-to-business (B2B) information systems
over the Internet. This typically requires collaborative enactment of complex
workflows across multiple organizations. To tackle the complex of these cross-
organizational interactions, we propose a methodology to break down workflow
requirements into five types of elementary flows: control, data, semantics, ex-
ception, and security flows. Then, we can determine the subset of each of five
types of flows necessary for the interactions with each type of business partners.
These five subsets, namely, flow views, constitute a workflow view, based on
which interactions can be systematically designed and managed. We further il-
lustrate how these flows can be implemented with various contemporary Web
services standard technologies.

1 Introduction

An important challenge in B2B information system is interaction. Interaction is de-
fined as consisting of interoperation and integration with both internal and external
enterprise applications. This has been a central concern because these applications are
composed of autonomous, heterogeneous, and distributed business processes.

The problem is prominent in large-scale B2B information systems, where interac-
tions are complex and varies across different types of business partners. We have
proposed a workflow view based approach to address this problem in our previous
work [1-3]. A workflow view is a structurally correct subset of a workflow [1]. The
use of workflow views facilitates sophisticated interactions among workflow man-
agement systems (WFMSs) and allows these interactions to inter-operate in a gray
box mode (that is, they can access each other’s internal information to some extent).
In addition, workflow views are useful in providing access to business processes for
external customers or users, including B2C e-commerce. The artifact of workflow
views is therefore a handy mechanism to enact and enforce cross-organizational inter-
operability in e-services.

108 D.K.W. Chiu et al.

However, the design of workflow views is still not obviously in large-scale infor-
mation systems. To tackle this problem, we now propose using the concept of flows
as shown in Fig. 1, a conceptual model in Unified Model Language (UML) class
diagram. We partition the interactions into five types of requirements: control, data,
semantics, exception, and security. Such interactions involve the communication of
events, which is an atomic occurrence of something interesting to the system itself or
user applications. A flow is a directed relationship that transmits an event from a
source activity to a sink activity between the business partners. The corresponding
flows to the requirements are therefore control flow, data flow, semantics flow, ex-
ception flow, and security flow, respectively.

Workflow Workflow ViewFlow ViewFlow

Data Flow
View

Data Flow

Control Flow ViewControl Flow

Semantic Flow ViewSemantic Flow

Exception Flow ViewException Flow

Security Flow ViewSecurity Flow

Fig. 1. Conceptual Model of Workflow Views and Flows

After the partitioning, we can determine the subset of each of five types of flows
necessary for the interactions with each type of business partners. These five subsets
are therefore, control flow view, data flow view, semantics flow view, exception flow
view, and security flow view respectively. These five flow views collectively consti-
tute a workflow view based on which interactions can be systematically designed and
managed.

We propose the formulation of flow in a loosely coupled Web services environ-
ment because current trends in information and communication technology accelerate
the widespread use of Web services in information systems. In this paper, a Web
service refers to an autonomous unit of application logic that provides some informa-
tion processing resources to other applications through the Internet from a service
provider. We employ various contemporary Web services technologies for adding
advanced control to simple procedure invocations. We define semantics references in
Business Process Execution Language for Web Services (BPEL4WS) [4] by using
the Web Ontology Language (OWL) [5] to provide explicit meaning to information
available on the Web for automatic process and information integration. In the aspect
of exception handling, we link the proposed exception-handling assertions in

 Designing Workflow Views with Flows 109

BPEL4WS to SOAP-fault implementations and examine some typical use cases of
exception. Further to increase the flexibility and alternatives in handling exceptions,
we also discuss how to employ Semantic Web technologies in handling exceptions in
addition to human intervention support.

The rest of the paper is organized as follows. Section 2 introduces semantics, con-
trol, and data flows while section 3 describes security and exception flows. Section 4
gives an example how semantics can help exception handling. Section 5 summarizes
the formulation of workflow views based on various flows with an example. Section 6
reviews background and related work. We conclude the paper with our plans for fur-
ther research.

2 Semantics, Control, and Data Flows

To illustrate our framework, we present a motivating example of intelligence in-
formation integration in an investigation of a suspect. We use this example instead of
a medical one as there are more semantic issues and there are more alternatives ways
for investigating people’s data, which requires often approval. For example, a detec-
tive investigates a suspect by inspecting an integrated view of records (e.g., criminal
records, border control, and bank transactions) sourced from different government

exception-flow

data-flow-1

data-flow-2

data-flow-N

IDrecord CrimeRecord BorderRecord

data-flow-(N -1)
data-flow-(N -2)

data-flow-(N -3)

CrimeRecord BorderRecord BankRecord

join join-attributes

security-flow

Single
Sign On

Single
Sign On

Single
Sign On

Single
Sign On

Generate
security
-token security-token

revoke security-token

security-token

security-token

Session
Start

Session
End

revoke security-token

revoke security-token

Start EndCrime
Check

Bank
Check

ID
Check

initialized keys-transferred

completed

completed

keys-transferred

join join

Border
Check

completedkeys-transferred

control-flow

semantic-flow

Identity

Legal

Custom

Banking

reference

trigger

link

Fig. 2. An Example of Control-flow, Data-flows, Semantics-flow, and Security-flow

110 D.K.W. Chiu et al.

and commercial organizations. In particular, bank transactions within one month
before and after a trip above a certain threshold amount are retrieved. To illustrate, a
sample WII schema with the following relations and attributes (in parentheses) is
shown as follows:

• IDrecord (id-no, tax-file-no, name, sex, date-of-birth, area-code, phone-no, ad-
dress, postal-code)

• CrimeRecord (id-no, crime-description, sentence, day-of-event)
• BorderRecord (id-no, entry-or-exit, place, vehicle, day-of-event)
• BankRecord (tax-file-no, bank-no, account-no, transaction, amount, balance,

day-of-event)

Fig. 2 illustrates the flow technologies to manage and monitor the control-flows,
data-flows, and semantics-flows in a large-scale information system. Flow technology
is becoming an integral part of modern programming models [6]. Each flow is sepa-
rated and depicted in the context of a multi-layer framework. This is also called flow
independency. The separation of flows results in increased flexibility of information
Web services in executing workflows. Thus the workflow modelers can easily change
or update the information integration plans for different situations.

Each service provider provides Web services at the service layer and BPEL4WS
orchestrates them together in order to achieve integrated plans. Fig. 2 describes work-
flow that all the activities (in circle) are performed for retrieving the datasets from
various databases (labeled by the activity’s name), and are coordinated by a set of
events (in single arrow lines). Each activity is assigned to a Web service for execution
by a matchmaking process. In particular, each activity has to obtain a read-access
approval from each data custodian and data service provider.

Semantics flow defines the semantic relationship among the information which
will be used in the execution of the workflows. Although via applying the Semantic
Web technologies the defined ontology has internally define the relationship of in-
formation semantics, the semantics flow abstract the main concepts and describe their
dependence in a more clear way. The data schema can be represented in OWL as
ontology. Based on it, we propose the semantic-referencing assertions in BPEL4WS
for supporting semantics flows in large scale information systems.

Control flow specifies the order of activities which will be conducted in the work-
flow. A control flow shows the picture of business logic in a workflow process.

Data flow defines the flow of specific data or dataset through a workflow. In sim-
ple workflows which only involve few data, its data flows are almost same as the
control flow. But, large-scale workflow system deals with many data in parallel. Its
control flow cannot show the action sequence of data in a clear way. Hence, we use
data flow to clarify the vision.

The interactions among control flow, data flow, and semantics flow are triggered
by external events (in dashed arrow lines). These external events contain the datasets
generated from the activities. Referring to Fig. 2, there is a set of N data-views (N is a
cardinal number) that are performed with the control-view. Each data-flow is also
assigned to an information Web service for execution by a matchmaking process if
necessary. In the context of BPEL4WS, we propose new data-integration assertions

 Designing Workflow Views with Flows 111

named <integrate>, <dataset> and <dataLinkage> for generating the data-flows. Re-
ferring to Fig. 2, both the control flow and data flow(s) reference to the relevant on-
tology described in the semantics flow. In a general case, the workflow is ended once
all the control flow and data flow(s) are completed successfully.

3 Security and Exception Flows

We propose to manage, store, and represent an user’s access control information as a
security token in the context of WS-Security [7], which describes and provides pro-
tection enhancements to SOAP messaging to provide quality of protection through
message integrity, message confidentiality, and single message authentication.

Based on the security token define in the SOAP header, we propose security view
assertions in BPEL4WS as <sessionStart/>, <clearance/>, <securityToken/>, <token-
Type/> and <sessionEnd/>. The <sessionStart/> assertion is used to identify the time
when the user’s security token is generated by the information system, and the <ses-
sionEnd/> assertion is used to identify the time when the user’s security token should
be revoked. The security flow is orchestrated with the control flow. As such, authenti-
cation is not only based on the “Username” and “Password” but also other informa-
tion such as the “SubjectName” and “SubjectLocation”. Each of the activity can de-
fine whether the security clearance assertion <clearance/> is required and the details
such as the type of security token <securityToken/> and <tokenType/>. For the to-
kens, Security Assertions Markup Language (SAML) [8] is used to define such au-
thentication and authorization decisions. SAML is an XML-based framework for
exchanging security credentials in the form of assertions about subjects.

In general, there are two types of exceptions in the proposed conceptual workflow
model: expected and unexpected exceptions. Excepted exceptions are predicable
deviations from the normal behavior of the workflow. In our proposed workflow
model, there are five categories of expected exceptions. Control exceptions are raised
in correspondence to control-flows such as start or completion of activities. Data
exceptions are raised in correspondence to data-flows such as data integration proc-
esses. Temporal exceptions are raised in correspondence to both control-flows and
data-flows such as the occurrence of a given timestamp or a pre-defined interval
elapsed. External exceptions are raised in correspondence to control-flows and data-
flows explicitly notified by external services such as system failures. Security excep-
tions are raised in correspondence to access control or security violations.

External and temporal exceptions are in general asynchronous, but control, data,
and security exceptions occur synchronously with activity executions. In our proposed
workflow model, unexpected exceptions mainly correspond to mismatches between
an activity specification and its execution. In many cases, human intervention is a
mechanism for handling unexpected exceptions. Activities failure is defined as
one or more activities have failed or are unavailable due to the context of activities
execution. In generation, there are three common exception-handling procedures [9],
namely, Remedy, Forward Recovery, Backward Recovery.

112 D.K.W. Chiu et al.

Anything that has an algorithmic flow also has a pervasive exception-handling
need [10]. Exception flows are often asynchronous with respect to the control flows,
data flows, and security flows, both in their raising and in their handling. Fig. 3 de-
scribes our proposed exception-handling approach in the different levels protocols
(i.e., BPEL4WS and SOAP). Once a control, data, or security exception is raised, the
corresponding Web service will generate a SOAP fault message as an exception event
to trigger the exception-flows.

Workflow Layer

exception-flows

control-flows
data-flows

security-flows

event

er
ro

r

interaction

ac
ti

o
n

SOAP Message

SOAP Fault

BPEL4WS
condition

orchestration

Fig. 3. Proposed Exception-handling Approach

We propose some new assertions to describe the exception-handling procedures in
BPEL4WS. These assertions integrate with the exception-handling procedure speci-
fied by the conditions in BPEL4WS, so that appropriate actions can be taken in the
context of control flows, data flows, and security flows.

Referring to the scenario of security-flows, there are two circumstances in which a
security exception can occur: activity-specific or cross-activity. An activity-specific
exception only affects exactly one activity, but a cross-activity exception may affect
more than one activity.

In the context of BPEL4WS, we propose new exception-handling assertion named
<exceptionHandling>, <event>, <condition>, and <action> for generating the data
flows. Moreover, the proposed conceptual workflow model requires a termination
mechanism to prevent exceptions trigger each other indefinitely. In the worse case, if
the workflow designer cannot find any feasible exception-handling procedure, the
problematic activity has to abort and so the user request has to abort as well. This is
known as failure determination and is an undesirable situation in workflow execution.
In this case, we propose new exception-handling assertion named <exceptionHan-
dlingDefault> for specifying the abort action if none of the rules can handle the ex-
ception.

4 Exception Hand ing with Semantic Assistance

We further demonstrate the feasibility and advantages of employing Semantic Web
technologies to assist in exception handling with two cases in security flow for rem-
edy approach and forward recovery, respectively.

l

 Designing Workflow Views with Flows 113

Imagine that there is a security exception occurred at the “ID Check” activity in
the security-flow. The Web service for “ID Check” generates a SOAP fault message.
Besides “Username” and “Password,” we propose two more attributes in the security
token for authenticating the user identity in the security token. They are “Subject-
Name” and “SubjectLocation,” representing the user full name and the postal code of
the user’s home address. The SOAP fault message describes the exceptional situation
of authentication failure because the Web service cannot authenticate the user location
based on the “SubjectLocation” in the security token (e.g., 2601) and the “postal-
code” in the “IDrecord” (e.g., 2612). Under this circumstance, the integration plan
cannot be carried out properly because the “ID Check” is the first critical activity in
the workflow.

If the “area-code” is “02” in the user’s record and also there is an ontology defin-
ing that the area “02” covers the postal codes from 2601 to 2612, the Web service at
the “ID Check” activity can authenticate the user location based on the “area-code.”
This case is referred to the remedy approach in the exceptional handling.

5 Formulation of Workflow View from Flows

Based on the flows identified in the previous section, we can now formulate the work-
flow view between the interacting organizations. In Fig. 4, we present a workflow
view in an investigation of a suspect between intelligence bureau and city bank,
which includes the control flow, data flow, semantic flow, security flow and excep-
tion flow between these two parties. The XML code is summarized in graphical form
with a tool called XMLSpy from Altova Inc. (http://www.XMLSpy.com). Because of
space limitation, only the control-flow part is depicted in this figure. We proceed to
discuss other flows in the following paragraphs.

(p p y) y
p r o c e s s

n a m e IntelligenceBureau&CityBan k
t a r g e t N am e sp .. . http://www .dickso n-compute r.com /servic e/WorkflowVie w
x m l n s http://schema s . xmlsoap .org/ws/2003/0 3/busines s -proces s/
x m l n s: ln s http://ww w .dickso n-compute r.com /wsd l/WorkflowVie w
s u pp r e ss J o in.. . yes
p a r t n e r L in k s

p a rt n e r L in k (2)
n a m e p a r t n e r L i n k T y.. . m y R o l e pa r t ne r R o l e

1 intelligenceBurea u lns:intelligenceBureauL i
nkTyp e

intelligence Servic e

2 cityBank lns:cityBankLink Type bankServic e
v a r i a b l e s
f l o w

n a m e contro l-flow
li n k s
r e ce i v e

n a m e Star t
p a r t n e r L in k intelligenceBurea u
p or t T y p e ini tialize PT
o p e r a t i o n initializ e
v a r i a b l e request
c r ea te I ns tan ce yes
s ou r c e linkNam e= initialize d

in vo k e (4)
n a m e p a r tn e r L in k p o r t T y p e op e r a t i o n i n p u tV a r ia b l e ou tp u t Va r i a b le ta r g et s ou r c e

1 IDChec k intelligenceBurea u lns:readP T rea d request keys ta r g et linkNam e... s ou r c e (3)
li n k N a m e

1 keys-ID -to-bank
2 keys-ID -to-crim e
3 keys-ID - to-border

2 Ban kChe ck cityBank lns:readP T rea d key s ta r g et linkNam e... s ou r c e (1)
3 CrimeChec k intelligenceBurea u lns:readP T rea d key s ta r g et linkNam e... s ou r c e (1)
4 BorderChec k intelligenceBurea u lns:readP T rea d key s ta r g et linkNam e... s ou r c e (1)

r e p l y
n a m e End
p ar t n e r L in k intelligenceBurea u
p or t T y p e completeP T
o p e r a t i o n complet e
v a r i a b l e resul t
t a rge t linkNam e=bank -end
t a rge t linkNam e=crim e-end
t a rge t linkNam e=bo rder-end

f l o w nam e=semanti c-flow
f l o w nam e=data-flow
f lo w nam e= securi ty-flow
f lo w nam e= exceptio n-flow

Fig. 4. A Graphical XML Representation of a Workflow View

114 D.K.W. Chiu et al.

In the control flow of Fig. 4, the “Start” activity generates a control event “initialized”
to trigger the execution of “IDCheck” activity. Similarly, the “IDCheck” activity will
trigger the “CrimeCheck” “BorderCheck” and “BankCheck” activities to be executed in
parallel with the “keys-transferred” events. In this case, the keys contain a set of records
(i.e., “id-no” and “ac-no”) for the consequent activities (Web services) to retrieve the
dataset. Once these activities are completed, the control-flow is ended successfully.

The data schema can be represented in OWL as an ontology. Fig. 5 shows an
OWL ontology in describing the “IDrecord” data schema. As a result, we propose the
semantic-referencing assertions in BPEL4WS for supporting semantic-flows as
shown in Fig. 5.

<owl:Ontology rdf:about="#Identity">

 <owl:versionInfo>v 1.00 2003/12/16 22:37:39</owl:versionInfo>
 <rdfs:comment>An example OWL ontology for Identity</rdfs:comment>
 ...
 <owl:Class rdf:ID="DataSchema">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#id-no"/>
 <owl:Class rdf:about="#name"/>
 <owl:Class rdf:about="#sex"/>
 <owl:Class rdf:about="#date-of-birth"/>
 <owl:Class rdf:about="#area-code"/>
 <owl:Class rdf:about="#phone-no"/>
 <owl:Class rdf:about="#address"/>
 <owl:Class rdf:about="#postal-code"/>
 <owl:Class rdf:about="#tax-file-no"/>
 </owl:unionOf>
</owl:Class> ...
</owl:Ontology>

Fig. 5. A Simplified Data Schema of OWL Ontology

<flow name="semantic-flow">
 <ontology activityName="IDCheck">
 <ontologyRef="http://www.example.org/identity.owl" />
 </ontology>
 <ontology activityName="BankCheck">
 <ontologyRef="http://www.example.org/banking.owl" />
 </ontology>
 <ontology activityName="CrimeCheck">
 <ontologyRef="http://www.example.org/legal.owl" />
 </ontology>
 <ontology activityName="BorderCheck">
 <ontologyRef="http://www.example.org/custom.owl" />
 </ontology> …
</flow>

Fig. 6. A Simplified BPEL4WS Code for Illustrating Semantic-Flows

Referring to Fig. 7, the data-flow-1 is used to join (in double arrows) the datasets
returned from the “IDCheck,” “CrimeCheck,” and “BorderCheck” activities into an
integrated view for a particular user request. Similarly, the data-flow-2 is used to join
the datasets returned from the CrimeCheck,” “BorderCheck,” and “BankCheck”

 Designing Workflow Views with Flows 115

activities respectively. Using the “id-no” as a join key, the data-flow-1 joins the
“IDrecord” dataset (with attributes “id-no,” “sex,” “age,” etc.), the “CrimeRecord”
dataset (with attributes “id-no,” “Crime-description,” “sentence,” etc.), and the “Bor-
derRecord” dataset (with attributes “id-no,” “entry-or-exit,” “place,” etc.). Similarly,
using the “id-no” as a join key, the data-flow-2 joins the “CrimeRecord,” “BorderRe-
cord” and “BankRecord” datasets. In particular, the data linkage (i.e., “id-no” and
“tax-file-no”) between “BorderRecord” and “BankRecord” are delivered by the “ID-
Check” activity from the control-flow. In a general case, the workflow is ended once
all the control-flow and data-flow(s) are completed successfully.

<flow name="data-flows">
 <integrate name="data-flow-1">
 <dataset name="IDrecord">
 <attributes name="id-no" key="primary"/>
 <attributes name="sex"/>
 <attributes name="age"/>
 ...
 </dataset>
 <dataset name="CrimeRecord"
 <attributes name="id-no" key="primary"/>
 <attributes name="crime-description"/>
 <attributes name="sentence"/>
 ...
 </dataset>
 <dataset name="BorderRecord"
 <attributes name="id-no" key="primary"/>
 <attributes name="entry-or-exit"/>
 <attributes name="place"/>
 <attributes name="date"/>
 ...
 </dataset>
 </integrate>

 <integrate name="data-flow-2">
 <dataset name="CrimeRecord"
 <attributes name="id-no" key="primary"/>
 <attributes name="crime-description"/>
 <attributes name="sentence"/> ...
 </dataset>
 <dataset name="BorderRecord"
 <attributes name="id-no" key="primary"/>
 <attributes name="entry-or-exit"/>
 <attributes name="place"/>
 <attributes name="date"/> ...
 </dataset>
 <dataLinkage name="IDrecord">
 <attributes name="id-no" key="foreign"/>
 <attributes name="tax-file-no" key=foriegn"/>
 <dataLinkage/>
 <dataset name="BankRecord"
 <attributes name="tax-file-no" key="primary"/>
 <attributes name="bank-no"/>
 <attributes name="account-no"/>
 <attributes name="transaction"/> ...
 </dataset>
 </integrate>
</flow>

Fig. 7. Proposed BPEL4WS Assertions for Illustrating Data-Flows

A security token in the context of WS-Security is shown in Fig. 8. Based on this,
the security flows are defined in Fig. 9 and the exception flows are defined in Fig. 10.

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"
 xmlns:wsse=http://schemas.xmlsoap.org/ws/2002/04/secext
 xmlns:wii="http://schemas.workflow.org/wii/2003/12/authentication">
 <S:Header> ...
 <wsse:Security>
 <wsse:UsernameToken>
 <wsse:Username>93856543</wsse:Username>
 <wsse:Password>3875</wsse:Password>
 <wii:SubjectName>Dickson Chiu</wii:SubjectName>
 <wii:SubjectLocation>2601</wii:SubjectLocation>
 </wsse:UsernameToken>
 </wsse:Security> ...
 </S:Header> ...
</S:Envelope>

Fig. 8. An Example Security Token

116 D.K.W. Chiu et al.

<flow name="security-flow">

 <sessionStart>generateSecurityToken</sessionStart>

 <clearance activityName="IDCheck">
 <securityToken required="True">
 <tokenType>SAML</tokenType>
 <securityToken/>
 </clearance>

 <clearance activityName="BankCheck">
 <securityToken required="True">
 <tokenType>SAML</tokenType>
 <securityToken/>
 </clearance>

 <clearance activityName="CrimeCheck">
 <securityToken required="True">
 <tokenType>SAML</tokenType>
 <securityToken/>
 </clearance>

 <clearance activityName="BorderCheck"
 <securityToken required="True">
 <tokenType>SAML</tokenType>
 <securityToken/>
 </clearance>

 <sessionEnd>revokeSecurityToken</sessionEnd>

</flow>

Fig. 9. A Simplified BPEL4WS Code for Illustrating Security-Flows

<flow name="exception-flow">
 <exceptionHandling name="rule-1">
 <event>anyActivitySpecificException</event>
 <condition>affectDataIntegration</condition>
 <action>remedyOrforwardRecoveryProcedure</action>
 </exceptionHandling>
 <exceptionHandling name="rule-2">
 <event>anyCrossActivityException</event>
 <condition>affectDataLinkage</condition>
 <action>backwardRecoveryProcedure</action>
 </exceptionHandling>
 <exceptionHandlingDefault>
 <action>abortControlFlow</action>
 </exceptionHandlingDefault>
</flow>

Fig. 10. Proposed BPEL4WS Assertions for Illustrating Exception-Flow

6 Literature Review

There have some earlier works in the area of workflow views and related notions of a
partial workflow. Liu and Shen [11] presented an algorithm to construct a process
view from a given workflow, but did not discuss its correctness with respect to inter-
organizational workflows. Our preliminary approach of workflow views has been
presented in [1]. From then, workflow views have been utilized as a beneficial ap-
proach to support the interactions of business processes in E-service environment [2,
3]. In [12], we adopted the object deputy model [13] to support the realization of
workflow views. Van der Aalst and Kumar [14] present an approach to workflow
schema exchange in an XML dialect called XRL but it does not include the support
for workflow views. Besides, van der Aalst [15] models inter-organizational work-
flows and the inter-organizational communication structures by means of Petri Nets

 Designing Workflow Views with Flows 117

and message sequence charts (MSCs), respectively. Since the author abstracted from
data and external triggers, the proposed communication protocol is not as complete as
the inter-operation protocol presented in the workflow view approach [3]. To address
the derivation of private workflows from inter-organizational workflows, Van der
Aalst and Weske [16] uses the concept of workflow projection inheritance introduced
in [17]. A couple of derivation rules are proposed so that a derived workflow is
behaviorally bi-similar to the original workflow based on branching semantics, in
contrast to the trace semantics adopted in the workflow view model. Schulz and Or-
lowska [18] propose to tightly couple private workflow and workflow view with state
dependencies, whilst to loosely couple workflow views with control flow dependen-
cies. They also develop a cross-organizational workflow architecture for view-based
cross-organizational workflow execution.

Prior research has proposed abstracting the information integration problem into
querying an infrastructure mediation service [19], which offers users and applications
a location-independent virtual integrated schema in a common data model [20]. Al-
though information integration issues are not new in database research communities,
applying workflow technologies in different application domains has many unique
properties that entail special integration design considerations, such as [21]. Cheung
et al. [22] use a bottom-up data-driven methodology to extend information systems
into Web services. However, this paper presents a top-down approach and focus on a
global view of the process.

Recently, the Business Process Execution Language for Web Services
(BPEL4WS) [4], a formal specification of business processes and interaction proto-
cols, has been proposed. BPEL4WS defines an interoperable integration model that
facilitates the expansion of automated process integration in both intra- and in-
tercorporate environment. In particular, the current version of BPEL4WS claims that
data flow will be allowed through links in addition to using links to express synchro-
nization dependencies in the future version [4]. Therefore, we demonstrate the pro-
posed models with our proposed data-integration, semantic-referencing, and excep-
tion-handling assertions in the context of BPEL4WS. In summary, all these XML
languages facilitate defining Web services interacted activities in the format of a
workflow. However, except SOAP-fault captures exceptions in the message level.
Further, these languages do not provide any expression to capture exceptions compre-
hensively.

Exception issues have been widely investigated in the workflow research commu-
nity. For example, Hwang et al. [23] propose a model for handling workflow excep-
tions. The proposed model provides a rule base that consists of a set of rules for han-
dling exceptions. If none of the rules match the current exception, a search on the
previous experience in handling similar exceptions is conducted. They also describe
several algorithms to identify the exception records by classifying the kind of infor-
mation about exceptions, defining the degree of similarity between two exceptions,
and searching similar exceptions. Similarly, Casati and Pozzi [24] present a method-
ology for modeling exceptions by means of activity graphs. They describe taxonomy

118 D.K.W. Chiu et al.

of expected exceptions by categorizing and mapping them into activity graphs. They
also show how to handle the exceptions in each class. Further, they also provide
methodological guidelines in order to support exception analysis and design activities.
Based on a taxonomy and meta-model, Chiu et al. [25,26] developed a web-based
WFMS, called ADOME-WFMS, to support automatic resolution for expected excep-
tions and human intervention for unexpected exceptions, through a unified framework
of event-condition-action (ECA) rules. Advanced matchmaking was also supported
with a role and capability model. However, all of these works do not explicitly sepa-
rate exception-flows from the control-flows and data-flows.

The Semantic Web is originally based on the research areas of knowledge repre-
sentation and ontology in Artificial Intelligent (AI). DAML+OIL is a semantic
markup language based on RDF and RDF Schema extended with richer modeling
primitives [27]. DAML+OIL provides a language for expressing far more sophisti-
cated classifications and properties of resources than RDFS [28]. Very recently, the
OWL Web Ontology Language is being developed by the W3C Web Ontology Work-
ing Group as a revision of the DAML+OIL web ontology language. OWL [29] has
been proposed to provide three increasingly expressive sub-languages for specific
communities of implementers and users, namely, OWL Lite, OWL Description Lo-
gics (OWL DL), and OWL full. OWL Lite supports the basic need for a classification
hierarchy and simple constraints. For example, while it supports cardinality con-
straints, it only permits cardinality values of 0 or 1. Thus, OWL Lite provides an
easier implementation and a quicker migration path for thesauri and other taxonomies.
OWL DL supports maximum expressiveness while retaining computational com-
pleteness (all conclusions are guaranteed to be computed) and decidability (all com-
putations will finish in finite time). OWL DL includes all OWL language constructs,
but they can be used only under certain restrictions (for example, while a class may be
a subclass of many classes, a class cannot be an instance of another class). OWL DL
is so named due to its correspondence with description logics, a field of research that
has studied the logics that form the formal foundation of OWL. OWL Full supports
maximum expressiveness and the syntactic freedom of RDF, but has no computa-
tional guarantees. For example, in OWL Full a class can be treated simultaneously as
a collection of individuals and as an individual in its own right. OWL Full allows an
ontology to augment the meaning of the pre-defined (RDF or OWL) vocabulary.
Thus, ontology developers adopting OWL should consider which sub-language best
suits their needs. In this paper, ontology is described in OWL, in particular in OWL
DL, because OWL provides a standard set of elements and attributes with defined
semantics, for defining terms and relationships in ontology. In addition, OWL con-
tains a set of logic-based primitives that are specifically useful in intelligence infor-
matics. Furthermore, we decided to deploy OWL instead of DAML+OIL because
OWL has been designed as a standard in W3C [30].

In summary, the development of solutions for workflow-based information inte-
gration is promising and challenging. To our knowledge, none of the prior research
studies the use of workflow technologies to materialize information integration from

 Designing Workflow Views with Flows 119

the control-flows, data-flows, security-flows, and exception-flows in a unified ap-
proach. Such application in security and intelligence informatics is novel. Neither
have there been discussions on the methodology for systematic partial or restricted
workflow formulation.

7 Conclusions

This paper has proposed a new perspective of workflow views through a subset of
various flows of original workflow. As such, in additional to basic control flow,
workflow views are now enriched with the support of data flow, semantics flow,
exception flow, and security flow. We believe that this is a viable solution for
systematic design of workflow views for better B2B interaction specification and
management. This application of the “separation of concerns” principle enables better
understanding of application semantics and is especially useful for large-scale infor-
mation systems. Our approach is still extensible because the methodology is still
valid even when new types of flows (say, privacy flow) are identified.

We have also detailed each type of flows, their usage, and possible implementa-
tion with contemporary Web services technologies. Further, we identified some useful
relationships among flows. In particular, we have demonstrated how semantics flows
can help exception handling. An in-depth study of this topic is of paramount interest
as this should be one of the most useful applications of Semantic Web technologies to
workflows.

There are more issues that can be explored to expand this work. In particular, pri-
vacy-flow relationships describe each service’s data practices what information they
collect from individuals and what (e.g., purposes) they do with it. Please note that this
paper takes privacy-flow as future work. In particular, security-flows and privacy-
flows are conflicting but both required according to laws and regulations. Further, we
are working on alerts, that is, process urgency requirements, which is also in line with
the flow concept. We are also interested in further studies in requirements engineering
aspects of our approach.

References

1. Chiu, D. K. W., Karlapalem, K., Li, Q.: Views for Inter-organization Work-flow in an E-
commerce Environment. In: Proc. Semantic Issues in E-Commerce Systems, IFIP
TC2/WG2.6 Ninth Working Conference on Data-base Semantics (2001)

2. Chiu, D. K. W., Karlapalem, K., Li, Q., Kafeza, E.: Workflow View Based E-Contracts in
a Cross-Organizational E-Services Environment. Distributed and Parallel Databases 12
(2002) 193-216

3. Chiu, D. K. W., Cheung, S. C., Till, S., Karlapalem, K., Li, Q., Kafeza, E.: Workflow
View Driven Cross-Organizational Interoperability in a Web Service Environment. Infor-
mation Technology and Management to appear (2004)

4. BPEL4WS. Available: http://www.ibm.com/developerworks/webservices/library/ws-bpel/
5. OWL. Available: http://www.w3c.org/2004/OWL/

120 D.K.W. Chiu et al.

6. Leymann, F., Roller, D.: Using Flows in Information Integration. IBM Systems Journal 41
(2002) 732-742

7. WS-Security. Available: http://www.oasis-open.org/committees/wss
8. SAML. Available: http://www.oasis-open.org/committees/security
9. Chiu, D. K. W., Li, Q., Karlapalem, K.: Facilitating Exception Handing with Recovery

Techniques in ADOME Workflow Management System. Journal of Applied Systems
Studies 1 (2000) 467-488

10. Perry, D. E., Romanovsky, A., Tripathi, A.: Current trends in exception handling. Soft-
ware Engineering, IEEE Transactions on 26 (2000) 921-922

11. Liu, D.-R., Shen, M.: Modeling workflows with a process-view approach. In: Proc. Data-
base Systems for Advanced Applications, 2001. Seventh International Conference on
(2001) 260-267

12. Shan, Z., Long, Z., Luo, Y., Peng, Z.: Object-oriented Realization of Workflow Views for
Web Services - an Object Deputy Model Based Approach. In: The Fifth International Con-
ference on Web Age Information Management, WAIM 2004.

13. Kambayashi, Y., Peng, Z.: An Object Deputy Model for Realization of Flexible and Pow-
erful Object-bases. Journal of Systems Integration 6 (1996) 329-362

14. Aalst, W. M. P. v. d., Kumar, A.: XML Based Schema Definition for Support of Inter-
organizational Workflow. Information Systems Research 14 (2003) 23-46

15. Aalst, W. M. P. v. d.: Inter-organizational Workflows: An Approach based on Message Se-
quence Charts and Petri Nets. Systems Analysis - Modeling - Simulation 34 (1999) 335-367

16. Aalst, W. M. P. v. d., Weske, M.: The P2P Approach to Inter-organizational Work-flows.
In: Proc. 13th International Conference Advanced Information Systems Engineering
(CAiSE 2001) (2001) 140-156

17. Basten, T., Aalst, W. M. P. v. d.: Inheritance of Behavior. Journal of Logic and Algebraic
Programming 47 (2001) 47-145

18. Schulz, K. A., Orlowska, M. E.: Facilitating cross-organizational workflows with a work-
flow view approach. Data & Knowledge Engineering 51 (2004) 109-147

19. Wiederhold G.: Mediators in the architecture of future information systems. IEEE Com-
puter, vol. 25, no. 3, pp. 38-49, March 1992.

20. Sheth A., Larson J.: Federated database systems. ACM Computing Surveys, vol. 22, no.
3, pp. 183-236, 1990.

21. Sheng O. R. L., Chen G. H. M.: Information management in hospitals: An integrating
approach. Proceedings of Annual Phoenix Conference, pp. 296-303, 1990.

22. Cheung S.C., Chiu D.K.W., Till S.: A Data-driven Methodology to Extending Workflows
across Organizations over the Internet. Proceedings of 36th Hawaii International Confer-
ence on System Sciences (HICSS36), CDROM, 10 pages, IEEE Computer Society Press,
Jan 2003.

23. Hwang, S. Y., Ho, S. F., Tang, J.: Mining exception instances to facilitate workflow ex-
ception handling. Proceedings of the 6th International Conference on Database Systems
for Advanced Applications, pp. 45-52, 1999

24. Casati, F., Pozzi, G.: Modeling Exceptional Behaviors in Workflow management Systems,
Proceedings of International Conference on Cooperative Information Systems
(CoopIS’99), 1999

25. Chiu, D. K. W., Li, Q., Karlapalem, K.: A Meta Modeling Approach for Workflow Man-
agement System Supporting Exception Handling. Information Systems, vol. 24, no. 2, pp.
159-184, May 1999

 Designing Workflow Views with Flows 121

26. Chiu, D. K. W., Li, Q., Karlapalem, K.: Web Interface-Driven Cooperative Exception
Handling in ADOME Workflow Management System. Information Systems, vol. 26, no.
2, pp. 93-120, 2001

27. RDF: An Axiomatic Semantics for RDF, RDF-S, and DAML+OIL. March 2001. Online:
www.w3.org/TR/daml+oil-axioms

28. DAML: The DARPA Agent Markup Language (DAML) Program. 2003. Online:
http://www.daml.org

29. Web-Ontology (WebOnt) Working Group: www.w3.org/2001/sw/WebOnt
30. Chen, H., Finin T., Joshi, A.: Using OWL in a Pervasive Computing Broker. Available

Online: citeseer.nj.nec.com/583175.html

M.-C. Shan et al. (Eds.): TES 2004, LNCS 3324, pp. 122 – 135, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Practice in Facilitating Service-Oriented
Inter- nterprise Application Integration

Bixin Liu, Yan Jia, Bin Zhou, and Yufeng Wang

National University of Defense Technology, Changsha, China
{bxliu, binzhou, yanjia, yfwang}@nudt.edu.cn

Abstract. Web services have been enjoying great popularities in recent years.
This paper addresses the issue of introducing web services to conventional
middleware-based enterprise applications to facilitate inter-enterprise
integration. StarWebService is presented as a framework to support service-
oriented integration by gracefully bridging the gap between web services and
middleware. On the basis of a hierarchy resource model and runtime
infrastructure, StarWebService enables not only exporting enterprise resources
as web services but also importing web services as enterprise resources. It
offers an economical and flexible way to provide and consume services for
cross-organizational integration.

1 Introduction

Middleware has been booming in the past ten years as the solution for heterogeneous
system integration within enterprises. Lots of enterprise information systems have been
built based on middleware infrastructures such as CORBA and J2EE. With the increasing
requirement for cross-organizational collaboration, web services [1] and service-oriented
computing [2,3] have been proposed as the mainstreaming paradigm for loose-coupled
integration beyond the enterprise boundaries. This trend demands enterprises to
accommodate their conventional middleware-based systems to service-oriented
architecture so as to facilitate comprehensive integration with their business partners.

Although this issue has been addressed by some famous enterprise integration
vendors (like BEA, IBM, IONA, Microsoft) by upgrading their middleware products
with the ability to create web services [5,6,7,8,9] from existing applications, problems
are only partly solved. We separate the integration requirements into two aspects. On
one hand, a general and incremental approach for exposing internal middleware-based
systems as web services is crucial for saving IT investment and migrating application
infrastructure to web services technology quickly and economically. On the other
hand, enterprises are also likely to outsource services from their business partners.
Consistent integration of the imported services with the middleware-based
infrastructure of inner systems is desirable for minimizing modifications to existing
systems and decreasing risks of system evolution. In short, integration across
enterprise boundaries demands introducing web services gracefully into existing
infrastructures, so as to benefit both from web services and mature middleware
technologies and legacy systems.

e

 A Practice in Facilitating Service-Oriented Inter- nterprise Application Integration 123

In this paper, we present our ongoing work on service-oriented enterprise
application integration framework with the prototype system StarWebService. It is
designed based on a layered resource view and runtime infrastructure. Characterized
by its novel service runtime environment and bidirectional resource gateways,
StarWebService closes the gap between web services and underlying specific
middleware technologies and enables rapid inter-enterprise integration without
additional coding. It compliments works from traditional middleware domain and web
service domain, and facilitates integration across organizations.

The paper is organized as follows. In section2 we present the main idea and system
overview of StarWebService. Then in section3 and section 4, we respectively
introduce in detail the service runtime environment with bus-container-service
architecture and bidirectional resource gateways which bridge web services with
various middleware technologies. With an example of procurement, section 5
demonstrates bidirectional inter-enterprise integration with StarWebService. After
introducing related work in section6, we draw conclusions in section 7 with a
summary and discussion on future work.

2 Overview of StarWebService System

Our research group [21] has been concentrating on enterprise computing and
middleware technologies for several years. StarWebService, a new member in the
Star family, targets at providing approaches for bringing the conventional middleware
technologies and web services together.

2.1 General Ideas and Main Concepts

StarWebService project was started with the belief of symbiosis of web service and
conventional middleware technologies. Although web service is regarded as the most
promising infrastructure for next generation of heterogeneous resources integration,
the process of adopting this new technology is always evolutional. As a result, the
needs for migrating existing middleware-based enterprise applications to service-
oriented architecture gracefully become obvious and urgent. A general platform and
corresponding tools will be of great help to facilitate such migration, which forms the
original motivation of the project.

Before the system details are described, we’d like to illustrate the general ideas and
main concepts in StarWebService.

StarWebService is designed on the basis of a layered resource view, which reflects
how enterprise applications are established and organized. In conventional
middleware-based applications, application components are inter-connected according
to specific middleware infrastructure. We call those components conforming to
specific middleware technologies enterprise resources. For instance, CORBA
components, EJBs are all categorized as enterprise resources. Enterprise resources can
be established from scratch or by wrapping various fabric resources and legacy
applications. Thanks to middleware, relative homogeneity is achieved within
enterprise scale. However, when integration across enterprise boundaries is
considered, heterogeneity in middleware infrastructures of autonomous organizations

e

124 B. Liu et al.

brings new challenges. So web services are introduced at the enterprise boundaries to
close the gaps. We model the resources shared across organizations as enterprise
services, which are technology and platform independent function modules with well-
defined interfaces. Enterprise services simplify integration by shielding partners from
technology details of inner-enterprise infrastructures and establish a common
environment for interactions. Finally, at the top of the resource layer are business
processes, constructed by composing enterprise services, which provide composite
value-added services. But business process is not emphasized in this paper. Further
discussions can be found in [20].

The belief of symbiosis of web service and middleware is fulfilled in
StarWebService by enabling bidirectional mapping between enterprise resources and
enterprise services.

On one hand, when enterprise resources are to be shared across organizations,
StarWebService helps to construct enterprise services as the external views for them.
Standard service descriptions are generated from original formats of enterprise
resource descriptions. Those services are in some sense virtual because they employ
existing enterprise resources as their implementations. External requests to services
are transparently translated to technology-specific formats and then dispatched to the
right backend resources. In this way, enterprise resources are exported to business
partners as enterprise services which utilize enterprise resources to perform their
functions.

On the other hand, there are cases that external services are expected to be invoked
by inner system as technology-specific resources. A typical scenario is that a service
from a business partner is outsourced as substitute of an out-of-date component within
enterprise system. It may become a tragedy if the discarded module is tangled with
other parts of the systems and all of them have to be modified in order to interact with
the service. The capability of importing services as specific enterprise resource will
simplify the problem in this situation and help to maintain consistence during system
evolution. Similarly but reversely, StarWebService creates virtual enterprise resources
that act as internal views for the imported services and delegate all the invocations on
those resources to corresponding services.

2.2 StarWebService System

Fig.1 shows the layered runtime infrastructure of StarWebService system. The bottom
depicts conventional middleware-based applications within enterprises. Application

Application Server

StarWebService

Service Composition Engine

Service Runtime Environment Service Invocation Interface

Export Gateway Import Gateway

Enterprise Resource

Enterprise Service

Business Process

Fig. 1. StarWebService architecture

125

server plays the role of runtime environment for enterprise resources. There are many
application server products from different vendors. Although the application server
does not belong to StarWebService, it is included for completeness.

The area filled with dark grey in Fig.1 shows the case across organizational
boundaries, which is emphasized by StarWebService. Compared to the application
server for inner-enterprise applications, service runtime environment (SRE) is
provided as the server side platform for deploying, running and managing enterprise
services. It is the kernel of StarWebService, consisting of components for protocol
processing, dynamic service deploying, service management and monitoring and etc.
Because we consider services built incrementally from enterprise resources, the SRE
is specially designed to provide service façades for enterprise resources. As a result,
the process of service development is simultaneous with service deployment. We will
show details of SRE in the next section. As the counterpart of SRE, service invocation
interface (SII) provides a group of APIs for client applications to invoke services with
SOAP messages.

To facilitate transparent bidirectional mapping across resource layers, the resource
gateways are introduced into StarWebService system. They deployed at the edge of
enterprise systems serving for connecting specific middleware technology with web
services. Their working directions differentiate them as export gateways for exposing
enterprise resources as services and import gateways for outsourcing services as
enterprise resources. The main functions of resource gateways include converting
description between enterprise services and specific enterprise resource type,
translating message from SOAP to specific interoperation protocol (like IIOP) or vice
versa, and adapting invocation to backend enterprise resources or services. The
export gateways are registered to the SRE and invoked when enterprise resources are
deployed as services and when those services are invoked, while the import gateways
utilize the SII to invoke external service. Section 4 will show the details of
bidirectional resource gateways.

At the top of the runtime infrastructure is the service composition engine, which
composes enterprise services into business processes. We argue that a non-centric
service composite execution is critical for scalability. So a collaborative process
execution mechanism is adopted in the composition engine, presented in [20]. It’s
beyond the scope of this paper.

In the following sections we will present the details of service runtime environment
and bidirectional resource gateways, the most interesting parts in StarWebService.

3 Service Runtime Environment

The service runtime environment denotes a software layer that offers fundamental
supports for deploying, running and managing enterprise services. It can be compared
to a special application server that supports web services.

Container-component model [17, 18] has been proved a successful architecture for
constructing CORBA and J2EE application servers, which inspires us to apply similar
concept to design SRE. But SRE have to deal with more complicated situations, for

 A Practice in Facilitating Service-Oriented Inter- nterprise Application Integration e

126 B. Liu et al.

example, supporting multiple underlying transport protocols for SOAP messages and
connecting to various kinds of back-end resources that implement services. So we
propose the bus-container-service architecture for SRE, as shown in Figure2.

H
T

T
P

engine

JM
S

engine

S
M

T
P

engine

A
bstract M

essage Interface

SOAP
Messages

deployment
descriptor

Service

lifecycle
management

tracing &
accounting

transaction
management

access control

implementation

SOAP Message Bus Service Container

EJBs

CORBA
Objects

XXX

CORBA
gateway

XXX
gateway

EJB
gateway

Service Runtime Environment

Fig. 2. Service runtime environment architecture

3.1 SOAP Message Bus

SOAP message bus is the communication infrastructure of SRE, enabling transport
independent SOAP message exchange. It is designed for shielding other components
in SRE from details of multiple transport bindings and providing consistent interfaces
for sending, receiving, packaging and extracting SOAP message.

It is composed of an abstract message interface and multiple transport engines.
The abstract message interface provides a uniform representation for SOAP messages
and simple, transport-agnostic interfaces for manipulating them. However, a transport
engine serves for specific underlying transport protocol. They listen on specific ports,
parse specific protocol packages, extract SOAP envelopes, hand them over to the
abstract message interface, and vice versa. A transport engine can simply consist of a
listening thread and several working threads, or be a complicated one with complex
connection management mechanism to improve their scalability and performance. An
important approach is to implement transport engines based on some components of
existing advanced servers. For example, web container supported by most web servers
is a good choice for implementing the SOAP/HTTP engine.

3.2 Service Container

Service container is the hosting environment for service instances. It isolates service
implementation from the services runtime infrastructure, and provides fundamental
support service instance creation, running and management. Primary functions of
service container include:

127

• Service instance lifecycle management. When a request arrives, service container
creates an instance and management its lifecycle according to life scope declaration
in the service’s deployment descriptor. Three kinds of life scope are supported:
request, the instance is created when request arrives and destroyed after response
returns; session, the instance works for a whole session and the service container is
responsible for maintaining the conversation status; application, once the instance
is created it won’t be destroyed until the server process ends.

• Resource gateway registry. Service container manages available resource
gateways, and provides call back interface for the service instances to find and
invoke proper gateway.

• Service access control. To insure secure access to sensitive services, role-based
access control is imposed before requests are processed by services. Service
container maintains a policy set which is used to decide the validity of each
request. Both service level and operation level control are supported.

• Transaction management. Service container also takes the responsibility of
propagating transaction context and coordinating transactional resources to commit
or rollback.

• Tracing and accounting. Because all messages are delivered to service container
before processed by the service, it is proper to do tracing and accounting in the
container. Further management can be carried out with collected information.

Function modules of service container are designed as pluggable components with
extensible interfaces, which enable on-demand system configuration and extension by
plugging new modules.

Note that a service container is dedicated to a specific transport engine in the
SOAP message bus, and responsible for processing incoming requests from that
engine. So after a service container is installed, it has a unique transport-specific
location. A transport engine may have more than one containers associated with it,
and they are distinguished by their names or paths.

3.3 Services

A service is conceptually a “component” deployed in the service container with its
deployment descriptor and implementation.

The deployment descriptor of a service, similar with that of EJB, records its meta
information, including its identifier, lifecycle scope, resource type, location of its
implementation, and some other properties. However in StarWebService, the
implementation of a service refers to enterprise resources that actually perform
functions declared by the service. They can be collocated with service container, but
commonly they can be any kind of applications running anywhere. Implementation is
logically related to the service by specific export resource gateway, which delivers all
the incoming invocations to corresponding back-end resource. We will go to the
details in the next section.

Similarly, a service container can host more than one service. From the consumers’
view, those services run at the same location but have different identifiers.

 A Practice in Facilitating Service-Oriented Inter- nterprise Application Integration e

128 B. Liu et al.

4 Bidirectional Resource Gateways

As we have mentioned in section 2, StarWebService bridges various middleware
infrastructures with web services by constructing virtual views between specific
enterprise resource type and enterprise service. The export and import gateways in the
system offer bidirectional mapping across resource layers which differs from works in
[10, 11, 12] which only concern with one-way adaptation.

Generally speaking, a resources gateway performs two functions. One is to convert
the descriptions between certain enterprise resource type and enterprise service. The
other is to adapt invocation to backend enterprise resources (services) in proper
protocols.

Up to now, we have implemented export gateways for typical enterprise resource
types including EJB, CORBA objects, CCM [18] and JMS client as well as import
gateway for CORBA resource. In the remainder part of this section, we will take
CORBA resources as the example to observe the details of resource gateways.

4.1 Gateway Components

The export and import gateways for CORBA resources consist of counterpart groups
of components, as Fig.3 shows:

Fig. 3. Bidirectional resource gateways for CORBA applications

• Export/import registries maintain logical associations between services and
CORBA objects. Typically, pairs of endpoint mappings are stored in the registries
to resolve CORBA objects that implement services or services that are masked by
virtual CORBA objects.

• Type mapping registry deals with data conversion between IDL and XML data
types. It provides standard schemas and custom type mappings that enable
compliers and adaptors to convert declared data type and encoded data stream
successfully.

• IDL2WSDL/WSDL2IDL compilers generate WSDL documents from IDL files or
vice versa. The compliers access the export or import registry during the
conversion for necessary information, such as the identity of the exposed service.

Export Registry
Import Registry

WSDL

WSDL stubWSDL stub

WSDL

IDL IIOPIIOP

SOAPSOAP

IDL stubIDL stub

web serviceweb service

corba objectcorba object

IDL&IOR

Inter-Enterprise System

bi-directional gateways

Import Adaptor WSDL2IDL ComplierExport AdaptorIDL2WSDL Complier

TypeMapping
Registry

129

Type mapping registries are also called to convert data type declarations when
compiling.

• Export/import adaptors are the core components of the gateways. They serve as
the mediators for interoperation across IIOP and SOAP protocol domains by
adapting invocations to the right targets with the right encoding format. Only RPC
style is considered here, so adaptors translate request/response messages and
exceptions messages.

4.2 Export CORBA Objects as Services

We explain the mechanism for exporting CORBA objects as two phrases, shown in
the left part of Fig.3.

The first is deploying phrase, depicted with dashed arrows. During this phase, the
CORBA object to be exposed is registered to the export gateway with its IOR and
IDL file. Moreover, a global unique qualified service name is provided. The
registration will trigger actions in the export registry and IDL2WSDL compiler. For
the export registry, mapping of <IOR, service_name> is constructed. Besides,
interface information in IDL files is parsed and saved to a repository in the registry
(implemented as the Interface Repository Service in CORBA), which is then utilized
by the compiler to generate WSDL document. After that the exposed service is
deployed to the service container in charge of the export gateway with a record in the
deployment descriptor <service_name, resource_type >. Now the first phrase ends.

Several points need to be mentioned roughly. For compilation, conversion rules
regarding all the IDL syntax are compliant to standard from OMG [19]. Constructed
data types in IDL are treated as custom defined XML types registered to the type
mapping registry which ensures they can be recognized and converted successfully
when the parameters of those types are received in the execution phrase. And in the
result WSDL description, the location of the exported service actually refers to the
address where the charging SRE runs.

The execution phrase, depicted with solid arrows in Fig.3, begins when the
consumer of the exported service generates stubs from the published WSDL and
makes invocation with SII. Because the generated WSDL is standard, other web
service platforms such as .NET can be used to develop client applications too.
Fortunately SOAP requests will firstly be directed to the SRE indicated by the service
location and then to the export gateway. Now the following tasks are performed at
the export adaptor to translate a SOAP request to an IIOP request: get the IOR of the
target CORBA object according to the entries in the export registry (locate); map the
SOAP-encoded parameters to CORBA compliant variables by the aid of type
mapping registry (decode); construct and emit IIOP request (invoke). When the IIOP
response (or exception) is returned, it is translated back to a SOAP response (or fault)
in a similar way.

Note that because the mappings between SOAP types and IDL types are not 1 to 1,
additional information from the repository in the export registry will be used to
determine the target IDL types of given SOAP parameter at the execution phrase.

 A Practice in Facilitating Service-Oriented Inter- nterprise Application Integration e

130 B. Liu et al.

4.3 Import Services as CORBA Resources

The mechanism of importing services resembles that of exporting resources, except
that the client needs both IOR and IDL to invoke the virtual CORBA object for the
imported service. So not only IDL is generated from WSDL when deploying a service
to the import gateway, but also the IOR for the virtual object is created, as the right of
Fig.3 shows.

The deploying phrase starts with compiling the WSDL document of the imported
service to an IDL file. The import registry records the pair of <service_name,
service_location> after parses the WSDL. At the same time, the generated IDL
information is saved to a repository in the import gateway which is later necessary for
the virtual CORBA objects to marshal and unmarshal data in IIOP messages.

To achieve dynamic creation of virtual CORBA objects, we design a special
servant registered to a POA with policy of USER_OBJECT_ID in the import
gateway. It creates a new mapping of <service_name, object_id> in the import
registry instead of creating an object instance when a new service is registered to the
gateway. The object_id is generated automatically and the gateway ensures its
uniqueness. It is then used to make IOR for the virtual object for the imported service.

In the execution phrase, with the generated IDL and IOR, the CORBA client can
make invocation in the same way as invoking an ordinary CORBA object, without
any knowledge about web services or SOAP. Evidently, the IIOP requests to the
virtual object will be delivered to the import gateway, where they are translated and
adapted to the external service in SOAP.

5 Inter- nterprise Integration with StarWebService

In this section we will take a simple example of procurement to demonstrate how
flexible and economical inter-enterprise integration is achieved by StarWebService.

In this case, shown in Fig.4, information system in enterprise ABC, employing
CORBA technology, has been operating for several years. It is an integrated system
that combines applications in the sale, finance, human resource, shipping and other

Fig. 4. The procurement example

e

 131

departments. With its business development, the enterprise wishes to expose the order
processing subsystem as web services to enable high level supply chain integration.
Meanwhile, delivering service from corp. S is outsourced as the result of organization
reform that cut the shipping department to improve efficiency. We’ll show how
StarWebService works in this scenario with minimum influence on existing systems.

Firstly, CORBA objects in the order processing subsystem that needs to be
exposed as services are decided. Because all objects in this subsystem do not deal
with placing orders, only those directly interacting with buyers are identified. Then
the operations of selected objects are examined to ensure that they are proper to be
invoked by business partners. After the set of objects and their operations are
determined, their IDLs are collected as an input IDL file to start StarWebService. As
described in the previous section, StarWebService registers an order processing
service in its service container, compiles the IDL file and generates WSDL document
which can be published to the UDDI. Later when the partner invokes the order
processing service, requests are translated into IIOP messages by StarWebService and
adapted to corresponding objects in the order processing subsystem.

StarWebService provides wizard for accomplish works described above. Fig.5
shows a snapshot of the wizard for exporting CORBA resource as a service. All the
developers need do is to fill the deployment form with correct information. Because
of dynamic deploying and adapting mechanism supported in StarWebService, zero-
coded integration is achieved.

Fig. 5. Export wizard in StarWebService

To import delivering service from Corp.S, its WSDL description is firstly retrieved
(e.g. from UDDI). Then it is passed to StarWebService to create a virtual delivering
object with its IOR and IDL definitions. Now that the delivering object interacts with
other subsystem substituting for the external service in Corp.S, there won’t be
dramatic modifications in other subsystems, especially when mechanism like naming
service are used in the enterprise system.

 A Practice in Facilitating Service-Oriented Inter- nterprise Application Integration e

132 B. Liu et al.

Similarly a graphic studio is included in StarWebService system to guide the
developers to manage imported services. It integrates the import gateway and other
tools to support the whole loop of deploying imported services, developing client
programs, debugging and running the whole application. Fig.6 shows part of its
interface.

Fig. 6. Studio for importing web services as CORBA objects

This example shows that StarWebService facilitates inter-enterprise integration in
the following aspects: firstly, it protects IT assets in enterprises against technology
revolution to the most extend by building services incrementally from middleware-
based application and consuming services without great impact on existing inner
systems; secondly, in virtue of it’s carefully designed platform and tools, it enables
integration without additional coding, so the complexity of dealing with various
middleware technologies can be reduced and efficiency can be improved.

6 Related Works

There are many works addressing service-oriented computing in recently years from
both industries and research groups. Also practices have been done to apply web
services to inner-enterprise and inter-enterprise applications [4]. Famous enterprise
integration vendors like Microsoft, IBM, BEA and SUN have extended their product
lines to support this new technology. StarWebService is similar with them in the
sense of a platform for developing and running web services. However, few of those
commercial products have addressed the migration issues, especially from
bidirectional aspects. The relationship between conventional middleware and web
services is still an open issue. We make a point that web services and middleware
technologies, like CORBA and J2EE, will coexist and benefit each other. For this
reason we present a framework to accommodate middleware-based applications to
web services for inter-enterprise integration.

133

Most commercial products on web services are tightly bound to specific platform
like .NET or J2EE. A few works also emphasis on the general framework for bringing
conventional enterprise systems and web services together. Typically, CapeClear [11]
and open source project Axis [12] resemble StarWebService in building web service
from several types of enterprise resources. However, StarWebService provides more
comprehensive support for various enterprise resource types than they do.

Discussions on the architecture and techniques for building service runtime
environment are not as plentiful as expected. The bus-container-service architecture
presented in this paper is justified to be a feasible way. Although the concept of
service container is also addressed in OGSA [16], the container’s primary
responsibility is to ensure the services adhering to Grid service semantics. We
propose service container for providing common service semantics that satisfy the
requirements of enterprise computing, hence properties like security and transaction
managements are concerned.

There are also some works that approach to web service for other purposes. [13]
introduces a framework for on-the-flying wrapping of Jini resources as web services,
[14,15] is presented for the similar purpose. While we emphasize enterprise resources
which is based on popular enterprise middleware infrastructures.

The last but not the least, works mentioned above only concentrates on wrapping
enterprise resource as services, neglecting the requirement of outsourcing services
consistently. Considerations for the import gateways are absent from their works.
StarWebService exceeds them in that it addresses bidirectional integration so that it
combines web services and middleware technologies integrally.

7 Conclusions

Popularity of service-oriented computing calls for migrating existing enterprise
applications to this new paradigm. In this paper, we first address the issue of
introducing web services to conventional middleware-based enterprise applications,
and then present our work on integrating web services and conventional middleware
technologies in order to facilitate inter-enterprise integration.. By virtue of
StarWebService, conventional middleware based applications within enterprises can
be easily and quickly delivered to the business partners as web services. Also web
services from business partners can be utilized by internal applications without
changing existing system infrastructure. It can be of great help to protect investment
and reduce difficulties in developing inter-enterprise applications. As complement for
works from middleware domain and web service domain, StarWebService provides a
valuable solution for flexible and economical inter-enterprise integration.

The future work will mainly focus on two aspects. The first is to improve the
system with monitoring mechanism across vertical layers and later a management
framework for enterprise services and enterprise resources. The other is to apply
StarWebService to more domains. Technologies for automatic service discovery and
composition are also in our research plans.

 A Practice in Facilitating Service-Oriented Inter- nterprise Application Integration e

134 B. Liu et al.

Acknowledgements

This work is supported by the National Natural Science Foundation of China under
Grant No.90104020, the National High-Tech Research and Development Plan of
China under Grant No.2002AA116040 and the National Grand Fundamental
Research 973 Program of China under Grant No.G1999032703.

References

1. David Booth, Michael Champion, etc. “Web Services Architecture” W3C Working Draft,
May 2003. http://www.w3.org/TR/2003/WD-ws-arch-20030514/

2. M.P. Papazoglou and D. Georgakopoulos, “SERVICE -ORIENTED COMPUTING”,
COMMUNICATIONS OF THE ACM, October 2003/Vol. 46, No. 10 pp.25-28

3. Mike P. Papazoglou. “Service-oriented computing: Concepts, characteristics and
directions”. In Proc. of 4th “International Conference on Web Information Systems
Engineering (WISE 2003), DEC 10-12, 2003, pp.3-12.

4. Steve Vinoski, “Integration with Web Services”, IEEE Internet Computing, Nov-Dec 2003
issue.

5. BEA Corporation, WebLogic Workshop 8.1 documents, http://edocs.bea.com/workshop/
docs81/index.html , 2004

6. IBM, WebSphere web services , http://www-106.ibm.com/developerworks/websphere/
zones/webservices

7. IONA Corporation. “Service Oriented Integration: A Strategy Brief”. White paper, Jan
2004. IONA Corporation, Artix Enterprise Web Service, http://www. iona.com/products/
artix/artix_prod_enterprise_web_services.htm

8. Microsoft, .NET Framework, http://msdn.microsoft.com/webservices/downloads/ default.aspx
9. Sun, Web Services Developer Pack (WSDP), http://java.sun. com/webservices/downloads/

webservicespack.html
10. Chandra Venkatapathy�Simon Holdsworth. An introduction to Web Services Gateway,

http://www-106.ibm.com/developerworks/websphere/zones/ webservices, 2002
11. “Web Service-Oriented Archetecture: The Best Solution to Business Integration”, White

paper of Cape Clear Software, http://www.capeclear.com
12. Apache Software Foundation, Axis project, http://ws.apache. org/axis/
13. Gannod GC, Zhu HM, Mudiam SV. “On-the-fly wrapping of Web Services to support

dynamic integration”. Proceedings of 10th Working Conference on Reverse Engineering
(WCRE 2003), NOV 13-16, 2003, pp.175-184

14. Yan Huang and David W. Walker. "Extensions to Web Service Techniques for Integrating
Jini into a Service-Oriented Architecture for the Grid". In Computational Science - ICCS
2003 (Part 3),published by Springer Verlag as Lecture Notes on Computer Science, vol.
2659, pages 254-263, 2003. ISBN 3-540-40196-2.

15. Y.Huang. "JISGA: A Jini-based Service-oriented Grid Architecture," The International
Journal of High Performance Computing Applications, vol. 17, no. 3, 2003. pp. 317-327.
ISSN 1094-3420.

16. I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. “Grid Services for Distributed System
Integration”. IEEE Computer, 35(6), 2002.

17. Sun Microsystems Inc. “Java™ 2 Platform Enterprise JavaBeans™ Specification, v2.1”,
Final Draft ,2002

135

18. Object Mnagement Group, CORBA Component Model Specification. 2002.6
19. CORBA to WSDL/SOAP Interworking Specification http://www.omg.org 2003.1
20. Bixin Liu, YuFeng Wang, etc. “Collaborative Process Execution for Service Composition

with StarWebService”, in Proc. of NPC2004, LNCS, Springer, to be published.
21. StarMiddleware Group, StarWebService project, http://www.starmiddleware.net

 A Practice in Facilitating Service-Oriented Inter- nterprise Application Integration e

M.-C. Shan et al. (Eds.): TES 2004, LNCS 3324, pp. 136–151, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Discovering and Using Web Services in M-Commerce

Debopam Acharya, Nitin Prabhu, and Vijay Kumar

SCE, Computer Networking,
University of Missouri-Kansas City,

Kansas City, MO 64110
dargc(npp21c, kumarv)@umkc.edu

Abstract. Web Services is slowly evolving to be a promising technology for
developing application in open, loosely coupled and distributed computing
environments and in mobile commerce. The web is no longer a repository of
information and has evolved into a medium for providing general and user-
specific services to customers. One of the key requirements of the web services
to meet user expectation is its universal accessibility free from temporal and
spatial constraints. Such accessibility is not easy to achieve through wired
internet and it appears that mobile approach is the only way out. Thus to access
the web services from anywhere and anytime, a suitable wireless web services
architecture is needed which must overcome the limitations of the mobile envi-
ronment (service discovery, low bandwidth, limited power source and scalabil-
ity bottleneck). This paper exploits the advances in wireless broadcast discipline
and proposes a new architecture that overcomes a number of problems in dis-
covering and using web services.

1 Introduction

A Web Service (WS) is a programmable application logic accessible using standard
internet protocols. It combines the best aspects of component based development and
the web and offers functionality that can be easily implemented. Unlike current com-
ponent technologies which are accessed via proprietary protocols, WSs are accessed
via ubiquitous Web protocols like HTTP using universally-accepted data formats such
as XML. In real business terms as Data Warehouse integrated heterogeneous data
sources (base databases), WSs have emerged as a powerful mechanism for integrating
disparate IT systems and assets. They work using widely accepted technologies and
are governed by commonly adopted standards. WSs can be adopted incrementally
with little risk and at low cost. Today, enterprises use WSs for point-to-point applica-
tion integration, to reuse existing IT assets, and to securely connect to business part-
ners or customers. Independent Software Vendors (ISVs) embed WS functionality in
their software products so they are easier to deploy. From a historical perspective,
WS represents the convergence between the service-oriented architecture (SOA) and
the Web. SOAs have evolved over the last 10 years to support high performance,
scalability, reliability, and availability. To achieve maximum performance, applica-
tions are designed as services that run on a cluster of centralized application servers.
A service is an application that can be accessed through a programmable interface.

 Discovering and Using Web Services in M-Commerce 137

WS represents a new form of middleware based on XML and the Web and helps
to solve the challenges using traditional application-to-application integration. It has
several advantages over traditional middleware which, unlike WS, doesn't support
heterogeneity, doesn't work across the internet, isn't pervasive, hard to use, and has
high maintenance costs. WS simplifies the process of making applications talk to
each other which results in lower development cost, faster time to market, and re-
duced total cost of ownership. Traditional middleware such as RPC, CORBA, RMI,
and DCOM, relies on tightly coupled connections which is brittle and may break if
any modification is made to the application. In contrast WS supports loosely coupled
connections which minimize the impact of changes to applications. A WS interface
provides a layer of abstraction among clients and servers and also makes it easier to
reuse a service in another application whereas loose coupling reduces the cost of
maintenance and increases reusability.

A WS can be developed using any programming language and can be deployed on
any platform. In addition, it can be accessed by an application written in any pro-
gramming language running on any platform. Although the Web supports universal
connectivity, it doesn’t resolve the issue of heterogeneous communication by itself.
WS supports heterogeneous communication because they all use the same data format
(XML), which makes it possible for communicating applications to understand each
other. WSs are essentially based upon three major technologies and standards:

Simple Object Access Protocol (SOAP) provides the means for communication be-
tween WSs and client applications. It is an XML-based protocol for messaging and
instead of defining a new transport protocol it works on existing protocols, such as
HTTP, or SMTP. A SOAP message has a very simple structure: an XML element (the
<Envelope>) with two child elements, one of which contains the optional <Header>
and the other the <Body>. The <Header> contents and the <Body> elements are
themselves arbitrary XML.

Web Services Description Language (WSDL) is used to describe the interfaces of a
service. For WSs, SOAP offers basic communication, but it does not inform about
what messages must be exchanged to successfully interact with a service. That role is
filled by WSDL; an XML format to describe WSs as a collection of communication
endpoints that can exchange certain messages. For developers and users, WSDL pro-
vides a formalized description of client-server interaction. Developers use WSDL
documents as the input to a proxy generator tool that produces client code according
to the service requirements. A complete WSDL service description provides an appli-
cation-level service description or an abstract interface and the specific protocol-
dependent details that users must follow to access the service at a specified concrete
service endpoint.

Universal Description, Discovery and Integration (UDDI) is used to register and
publish WSs and their characteristics so that they can be found by clients. The
UDDI specifications offer users a unified and systematic way to find Service Pro-
viders through a centralized registry of services that is roughly equivalent to an
automated online “phone directory” of WSs. On one hand, there are browser-

138 D. Acharya, N. Prabhu, and V. Kumar

accessible global UDDI registries available for “public” access and, on the other
hand, individual companies and industry groups are starting to use “private” UDDI
Registries to integrate and access to their internal services. UDDI provides two
specifications which define the structure of the service registry and its operation.
Registry access can be programmatically accomplished using a standard SOAP API
for both publishing and querying.

However, in spite of its adaptability and scalability, it still has spatial constraints
that limit its usability. We propose to eliminate most of them through significant im-
provements in various aspects of mobile discipline. Powerful mobile devices are be-
coming more common and location tracking techniques have been improved to find
the location of a mobile user with precision. The widespread use of internet, elec-
tronic shopping, mobile and wireless communication systems, etc., motivated re-
searchers and developers to migrate all types of information and also services to the
web. We, therefore, envision an all powerful web system where service provisioning
is also included as one of its capabilities. The migration of WSs to internet provided
an excellent way to achieve application-to-application interaction which made it pos-
sible for companies to manage their business activities efficiently, economically, and
with a high degree of automation. It is estimated that by 2008, the number of wireless
and mobile devices will significantly outnumber the wired devices. Studies by indus-
try analysts forecast huge demand for wireless and mobile devices, creating substan-
tial opportunities for wireless device application and service providers. Faced with an
increasingly difficult challenge in raising both revenue and numbers of subscribers,
wireless carriers and their partners are developing a host of new products, services,
and business models based on data services. One of the emerging technologies are the
location-based services which intend to boost both service and revenue. Examples of
location-based services include getting driving directions, traffic information,
weather, and travel schedules, paying electronic tolls, scheduling fleets for transport
operators and locating convenient modes of transportation, and locating people and
businesses listed in electronic directories.

It is becoming increasingly clear that Location-based Services will play a major
role in the evolution of Wireless WSs (WWS) which is the topic of this paper. In this
work we develop an innovative architectural framework called Web Bazaar to provide
access to location based WSs to all users (mobile and static) which is free from spatial
and temporal constraints. Thus a user can access his desired service from anywhere
and anytime in a user-friendly manner.

The rest of the paper is as follows: In section 2, we discuss previous work on WSs.
Section 3 elaborates the constraints present in the existing models of WSs and their
limitations in wireless and mobile environment. Discussion of the location domain
and its application for development of location based WSs is presented in section 4.
Section 5 explains in detail the proposed architecture of location based WWS called
Web Bazaar and its working is discussed in section 6. Security of WWS and one of its
possible solutions is discussed in section 7. We conclude the paper and discuss future
work in section 8.

 Discovering and Using Web Services in M-Commerce 139

2 Previous Work

In this section we review earlier work in WSs. Mobile Resource Management
(MRM) system for mobile E-commerce [9] provides location-based and Context-
aware services for mobile users. It helps M-commerce service providers, such as lo-
cal advertisers, to improve the effectiveness of their advertisement process and real-
time E-commerce services. Ad hoc pervasive connectivity on mobile systems based
on Bluetooth applications has been discussed in [1] where the proposed Ronin Agent
Framework introduces a hybrid architecture that provides a simple and uniform
scheme for deploying highly dynamic distributed intelligent components in a mobile
world. It provides an insight into the existing discovery services like Service Location
Protocol (SLP), Jini, Universal Plug and Play (UPnP) etc., and their limitations in
providing Mobile E-services. It also highlights lack of rich representation, constraint
specification and inexact matching and ontology support. M-commerce application of
proximity based coupon delivery is discussed in [11]. In a typical scenario a merchant
is notified when a valued customer is within some distance of a retail outlet, upon
which the customer is delivered a coupon or some notice of a special promotion. They
discussed the limitations of current architectures for providing location information,
and suggested the requirements for an architecture, which would make such a service
possible. The work reported in [2] proposes to define a caching service for WSs in
mobile wireless ad hoc networks. The work is based on the previous experiments
where authors have explored caching CORBA - based services as a way to increase
their availability, predictability, times responsiveness and scalability. The author iden-
tified the maintenance of original programming model and sufficient transparency to
be a big challenge because the interceptors are not yet standardized in WSs. Two
scenarios of using WSs in mobile devices have been described in [8]. The first sce-
nario considers mobile devices acting as service requestors. It is most suitable for
nomadic users who try to locate a product or service close to their physical location to
manage their personal information hosted on a central server and to administer their
events by invoking relevant WS. In the second case a proxy plays the role of the
mobile representative in the fixed network architecture. This proxy interacts via
WS-aware protocols with the service broker and the service provider and returns the
results to the mobile devices using WS-agnostic protocols such as WAP/WML over a
wireless network. In the AROUND architecture [3], two distinct models (distance and
scope based) of location based [7, 9, 10] selection have been considered.

In the distance based model clients select the servers located within some distance
from their own position. The main limitation of this model is that the correlation be-
tween context and proximity tends to decrease as the notion of proximity is enlarged.
In the scope based model each service has a service scope that explicitly represents
the usage context of that service as a region in physical space. The clients select only
those services that match their location. The distance based model places the focus on
the location of the server providing the service whereas the scope based model places
the focus on the geographical area defined for the service usage.

140 D. Acharya, N. Prabhu, and V. Kumar

The resource demands for environment that wish to support mobile code to enable
disconnected operation have been examined in [4] and some existing commercial ser-
vice discovery mechanisms have been discussed in [5, 6]. Authors argued that
DAML (DARPA Agent Markup Language) was expected to change the way people
and machines browse the Web. They also try to show that it can be used to change
the way services are described and discovered in the wired and the wireless world.

The WSs caching for seamless access in the event of disconnections is investi-
gated in [13]. The author suggested that continued access to WSs from mobile devices
during disconnections could be provided by a client-side request-response cache to a
limited extent. The Cool town project at HP Laboratories [12] addresses the problem
of service discovery for nomadic computing.

The MUSA-Shadow project [14] aims to avoid the fragmentation of the web into
spaces that are solely accessible with specific type of devices while providing an ex-
tensible and flexible infrastructure for location based services. The issues concerning
the development of an extensible platform for location based services (LBS) provi-
sioning was presented in [15]. Authors focused on the exploitation of XML either
through PoLos specific syntaxes or through WS interfaces. In [16] authors proposed
to advance the art of location based applications thus enhancing end-user applications
and new commercial opportunities.

3 Limitations of Web Services in Wireless and Mobile
Environment

The present model of WSs has some fundamental limitations which affect their seam-
less infusion into the wireless and mobile environment. This section reviews some of
them and discusses the need for location information in the existing structure to make
it commercially useful.

 Service discovery: In current WS infrastructure there is no support for location
dependent service discovery. A user, when searching for a service, has to scan the
entire range of available services published in the UDDI. This not only is ineffi-
cient but consumes more power which is not acceptable to mobile systems. A lo-
cation based WS system can immensely enhance the efficiency of a system. The
user will get a more concise or filtered view of the available WSs according to his
choice of location. For example, if a user wants to book a hotel in the Plaza area of
Kansas City, then his request should be responded with only those hotels which
are located in and around Plaza.

 Pull based information retrieval: WSs support request/response style of messag-
ing. In wireless environment with large mobile user population this style of infor-
mation access may suffer from scalability bottleneck as the number of users’
request increases. An amicable solution would be to broadcast the information of
the WSs. Thus, publishing WSs by broadcasting them to the user can reduce the re-
quest portion of information exchange in a mobile WS system. We know that any
action that makes a WSDL document available to a service requestor, at any stage
of the service requestor’s lifecycle, qualifies as service publication [17]. We argue

 Discovering and Using Web Services in M-Commerce 141

that broadcasting WSDL [18] documents containing description of WSs is a con-
venient way of publishing WSs and can be categorized as direct publication.

 Personalization of WSs: To further improve the availability of WSs, all location
dependent services should be complemented with personalization. Personalization
in location-dependent services is a good way of improving the usability of the ser-
vices by providing the essential and probable information. It is a big challenge to
design personalized location-awareness and location dependency so that it does
not require too much effort.

 Topical WSs: WSs which handles topical data may be categorized as Topical
WSs. Topical information is important to users. This is the kind of information
that may change while the user is on the move, in which case the information pre-
viously checked or accessed may no longer be valid. Examples of such topical in-
for- mation are traffic information, weather forecasts, last minute theatre ticket
deals, stock information and foreign exchange rates, flight bookings, etc. An im-
portant issue is whether the user needs the information when he or she is at the
given location, before getting at the location, or when planning a visit. Flexibility
in mobile environment requires that one should support both pre-trip planning and
on-route information about occasionally found points of interest. The user should
face least constraints when availing these services. At present, no existing archi-
tecture handles the issue of Topical WSs separately.

 Limitations of UDDI: At present UDDI [17] does not support semantic descrip-
tion of services and since it depends on the functionality of the content language,
it is very difficult to automate service discovery to get accurate information. It
provides keyword-based search. For example if restaurant in Chicago is queried,
the result would also include restaurants with names like Chicago Uno which is in
Kansas City. It is logically centralized but physically distributed repository of
WSs. Currently UDDI consists of three components (a) white pages of company
contact information, (b) yellow pages that categorize businesses by standard tax-
onomies and (c) green pages which document the technical information about ser-
vices that are available. This structure of UDDI will not be viable for discovering
services especially if we consider location based services like local traffic infor-
mation, local weather, and so on.

4 Location Based Web Services

Location based WSs are an important class of context aware applications. We argue
that incorporating location information in a WS can significantly decrease the service
discovery time on part of the user. This property becomes more significant for a user
with a mobile unit which has limited storage and processing capability. The mobile
unit when searching for a service in a particular location expects to discover services
which are in and around the desired location. There are a variety of applications like
traffic information, restaurant and hotel booking, serendipitous location based search
of public places like fast food joints, gas stations, post office, grocery stores, etc.,
which, if made location dependent, can make a strong impact in our day to day lives.

142 D. Acharya, N. Prabhu, and V. Kumar

There has been some work to represent locations. We present a brief description of
two of the most prominent existing location models [19].

 Geometric Model: In this model, the location is represented by sets of
coordinated n-tuples. This model is based on reference coordinate systems, the
coordinates of which are returned by the Global Positioning System. One of the
advantages of this model is the accuracy with which it locates an object. Another
advantage is that it is compatible across heterogeneous systems. But it can be very
costly and complex to implement and thus may not be suitable for mobile units.
Further, GPS signals are weak inside buildings which make it ineligible for use in
every environment.

 Symbolic Model: This model resembles the real world entities like cities, streets
and buildings. This model is simple to handle and has coarser granularity than the
geometric model as it is based on the relations between the real world objects.
Further, less amount of data is involved which makes it easier to manage. Thus,
this symbolic location model seems more suitable for mobile computing environ-
ments. One of the disadvantages is that it is difficult to convert location informa-
tion across heterogeneous environments.

The Universal Location Domain (ULD): Our approach is to create a framework
which is compatible across all platforms. To achieve this, we propose to create a
Universal Location domain (ULD). The ULD contains locations which are
hierarchically arranged in a structure called the location tree. This idea is motivated
by several facts. To provide ubiquitous computing ability, WSs should have the
compatibility across all types of mobile devices and across all types of platforms.
Moreover, Service Providers are not unique across different parts of the world and
only the presence of a unique location structure may proliferate the use of location
dependent WSs. We define a location in the ULD as follows:

Location: A location is a symbolic representation of a real and physical space which
is designated by Cartesian Coordinates. A location is non-atomic in nature and it has
the possibility of being distributed into newly constituted locations.

The location tree is a set of locations arranged in a hierarchical manner. An impor-
tant property of the locations present in the ULD is Containment. The containment
property helps to determine the relative position of an object by defining or identify-
ing locations that contains those objects. The subordinate locations are hierarchically
related to each other. Thus, Containment property limits the range of availability or
operation of a service. We use this important property in location dependent WS dis-
covery.

Apart from the ULD, we also define the location of the WS which is provided by
the user who intends to access the service. It is the job of the location framework to
create a location structure for the service. This location structure is then suitably
mapped on the ULD to find the exact location of the WS. Consequently, the requested
service is provided to the user. We present an example to explain the functionality of
the proposed location framework.

 Discovering and Using Web Services in M-Commerce 143

Starbucks

Kansas City

Plaza

USA

TopecaSt. LouisKansas City

JohnsonJackson

Plaza

Fig. 1. A Portion of (ULD) Fig. 2. Location Structure of WS

A mobile user intends to access the WS of the Star Bucks Coffee Shop and place
an order for a home delivery. He initiates the order by placing a query for the avail-
ability of his choice of coffee in the Star Bucks Plaza branch of Kansas City. It is the
job of the location framework to develop the location structure of the requested WS.
Here, the location structure of the WS as depicted in Fig. 1 is: Star Bucks Kansas
City Plaza. To search and access the required WS, a unique ID for the WS has to
be generated. This unique ID is generated by mapping the location structure of the
WS with the ULD. The location of the WS in the ULD is: USA Kansas City
Jackson Plaza (Fig.2). The Containment property limits the search of the location
of the various Star Bucks services which are present only at the subordinate locations
of “Plaza”. The number of searched entries for the desired WS is equal to n where n is
the number of subordinate locations near Plaza. Thus, the set of location IDs of the
requested WS is: Star Bucks USA Kansas City Jackson Plaza Xi where
i is the number of subordinate locations in “Plaza”. It is possible that the Star Bucks
coffee shop is not present in all the subordinate locations of the “Plaza”. Thus, the
number of results will always be greater than or equal to the number of original loca-
tions of the WS. The exact number of locations will be found when calculated IDs
will be matched with the entries of the WS present in the Distributed Service Reposi-
tory (DSR), a structure which we discuss in our proposed architecture of Web Bazaar
in the next section.

5 Web Bazaar: A Broadcast Based Location Dependent Web
Service Architecture

Our approach attempts to address some of the limitations of WSs in wireless and mo-
bile environments discussed in Section 3. The Web Bazaar architecture consists of a
Broadcast Server, uplink and downlink Wireless Channels, Distributed Service Reposi-
tory (DSR) containing Service Marts and the Universal Location Domain. The broad-
cast server has the central role of service distribution. In this model we propose to
broadcast the services instead of the traditional pull based access. We argue that in the
future, to make the WSs popular among the increasing group of mobile users,
efforts should be made not only to publish the services but also to distribute them to

144 D. Acharya, N. Prabhu, and V. Kumar

the users. This will support both pre-trip planning and on-route information on occa-
sionally found points of interest. Moreover, as discussed in Section 3, WS use XML
documents the size of which tends to be much larger than traditional text messages.
Thus, efforts should be to the minimize number of messages exchanges between a mo-
bile user and the WS provider. Broadcasting WS information may significantly reduce
the number of messages required for the process of service discovery. This is our moti-
vation behind the proposition of WS broadcast in Web Bazaar.

XML Soap request
Server

Broadcasting Location
dependent web services ServerDSR

UDDI

Location
domain

XML Soap response

Broadcast
Region

Mobile Unit

Fig. 3. Web Bazaar: Wireless Broadcast based Location dependent WS Architecture

Fig. 3 shows the proposed architecture of Web Bazaar. The standards and specifi-
cations demand that the structure and role of UDDI should not be changed. Thus, to
incorporate location information, we propose the concept of Distributed Service Re-
positories (DSR). A DSR contains WSs entries which are local to the region. Each
broadcast region contains a DSR. The DSR incorporates the location information in
the WSs.

For a particular broadcast region, the WSs which cater to the region are extracted
from the UDDI. The location ID for the WS is generated by using the Universal Loca-
tion Domain. For any WS located at a particular location, its location structure is gen-
erated and mapped with the ULD to get the unique location ID. This means for a sin-
gle WS, there will be many entries depending on the number of locations at which the
service is located. This may increase the size of the DSR, but considering the fact
that the DSR contains entries which are local to the broadcast region, the number of
entries will be limited. A different view of the WS is then generated. This view con-
tains fewer parameters which makes it suitable for broadcast in bandwidth limited
channels. Views are compact documents and contain information about the location
dependent WSs. The views are broadcasted and used to initiate the service from a
mobile or wireless device.

Within a DSR, the services may be organized by keeping similar WSs under one
group. For example, the DSR in Kansas City will group the WSs related to hotels un-
der one group, grocery stores under another group, and so on. Each specific group is
called a Service Mart. This makes the service discovery much easier. Moreover, It
helps in creating simple but informative views. For example, if a user in Lenexa in-
tends to use the WS of grocery store in downtown area in Kansas City, he just have to
give the location name and type of Service Mart (here, for example, Food Mart) in his
request to discover a service. In contrast to the earlier method of searching the UDDI

 Discovering and Using Web Services in M-Commerce 145

registries and then deciding for a service, our way of service discovery through
broadcast of views seems much faster. As evident from table, these views are much
simpler than the UDDI entries.

Table 1. Views of two Types of WSs

Service Name Mart Type Input, Output Parameters Location
Star Bucks Fast Food CoffeeType, Order Destination, Card No. Plaza
Theatre Ticket Entertain Movie, Showtime,No.ofTickets,Card No. Down Town

The advantages of creating DSRs are manifold. First, it helps in creating location
dependent WSs by assigning unique location IDs to each service. This helps in fast
service discovery. Second, the views created for the WSs are compact so that they
may be used to broadcast the service definitions in bandwidth limited wireless chan-
nels, thus supporting our broadcast mechanism. Third, a user does not have to contact
the UDDI for service discovery for location dependent services. By mentioning the
location, the request can bypass the UDDI and contact the corresponding DSR di-
rectly. This prevents exhaustive search, allows fewer data download which is suitable
for bandwidth limited wireless environment and allows fast access to the service.

There is an important issue which needs to be discussed at this point. There is a
large number of WS entries present in the UDDI. Broadcasting all of them through
bandwidth limited wireless channels may sound unrealistic at present. At the same
time we argue that broadcasting location dependent WSs present in DSRs which are
commonly used in day to day life will certainly make them more popular among the
mobile users. Prominent among these services are the Topical WSs in which the in-
formation accessed frequently change when the user is on the move. Important exam-
ples are flight bookings, last minute theatre ticket deals, traffic information etc.

6 Working of Web Bazaar

The broadcast mechanism consists of a broadcast channel from the broadcast server to
the users. It also consists of an uplink channel from the users to the DSR and a
downlink channel from the DSR to the user (Fig.3). Each broadcast is preceded by an
index which depicts the sequential order of WS broadcast. The index is also inter-
leaved between the broadcast views so that the user does not have to wait for the next
broadcast schedule. The structure of the index will be helpful to the users in personal-
ization of WSs which we discuss later. The broadcast includes the compact views
which contain WSDL definitions. These definitions are WSDL components. The
WSDL components consist of interfaces, bindings, and services.

The service download, request and response of services are managed by a Java
based Coordinator present in the mobile device. This Java based Coordinator is
installed in the machine when the user avails the Web Service from the service pro-
vider. The Coordinator has the task of listening to the channel, downloading the
required service, initiating the request, and receiving the response. The Coordinator
also has an important task of Personalization of the WSs.

146 D. Acharya, N. Prabhu, and V. Kumar

Personalization of WSs means to access and use Services only according to a pre-
planned schedule fixed by the user. The Coordinator downloads the index containing
the description of the services to be broadcast. The user checks the index according to
his needs and so does not have to bother about the downloading of the services. Based
on the Service checked and the predetermined schedule from the index, the Coordina-
tor estimates the time required for service download. It allows the mobile device to go
into doze mode to save power. It becomes active only when the service is about to be
broadcasted. The service components are downloaded and the user is notified to start
the service request. Thus, only those services needed by the user are downloaded from
the channel. This describes the ability of the user to block certain services data and
personalize his requirements.

To initiate a service request, the Coordinator creates a SOAP message. The XML
document in the message is created according to the downloaded service description
which contains the unique location ID (for a location dependent service) and user’s
ID. Even if the view of the WS of the desired location is not present, their structures
and properties of XML documents allow changing the view information to access a
particular location dependent service.

Example:

Star Bucks Fast Food CoffeeType 1,Order Destination, Card No. Plaza

Star Bucks Fast Food Coffee Type 2,OrderDestination, Card No. Walnut

If the user wants to order coffee of type 2 which is not available in the Plaza
branch, he doesn’t have to wait for the view of Walnut to be broadcasted. He can
simply change the XML information of the views by replacing the Coffee Type In-
formation and the Location information. It is the job of the ULD to map the location
information provided by the user to generate appropriate location IDs which can be
used to search the appropriate location dependent service from the DSR.

After XML request is constructed, the coordinator sends this message to the
SOAP server present in the DSR through the uplink wireless channel. Since this mes-
sage is compact, it is the responsibility of the DSR to make it compatible for the Web
Server. When all the definitions are added, The SOAP server directs the request to the
service provider's WS. If the user requests a service which belongs to another loca-
tion, the request is transferred to the DSR containing the service description. This
identification of location is done by the DSR local to the user.

The WS, after receiving the requests, processes it and creates a response which is
also a SOAP message. It is sent to the DSR local to the user. The DSR operates on the
response and makes it compact thus making it easier for the DSR to push the response
through the downlink channel to the user. The compaction is necessary as the SOAP
messages which are several times larger than text messages may overburden the
bandwidth limited wireless channels. When the response reaches the user, he is noti-
fied about its arrival.

The proposed framework thus provides location dependent WS to the mobile user.
Broadcasting WS information signifiicantly reduces the number of messages in the

 Discovering and Using Web Services in M-Commerce 147

wireless environment. The broadcast XML views are compact and allows efficient
service request/response style of messaging. The ULD is used to create appropriate
location information for the service entries in DSR and also for service request. The
simplified hierarchical structure of the ULD allows smooth addition/deletion of loca-
tion information when needed.

7 Security of Wireless Applications

Wireless systems face greater security risk than wired systems and this is true also for
WWS. WWS exposes companies to a massive range of new threats and vulnerabili-
ties. The overall security of a wireless application is only as strong as its weakest link,
and in a mobile-commerce network, the weakest link is the mobile device. We discuss
the risks and security threats in a service framework. It can be inferred that existing
wireless security controls are inadequate to deliver the levels of security that the next
wave of WWS will demand. Security issues related to communication, theft, attack,
DoS (denial of services), etc., are important but we only propose to investigate secu-
rity issues related to user authentication. Some of the key security issues with wire-
less application security include:

• Confidentiality: Access to confidential and sensitive data should be restricted to
only those authenticated users.

• Availability: Mission-critical data and WSs should be available with contingency
plans to handle catastrophic events such as infrastructure failures, security
breaches, etc.

• Integrity: The integrity of data transmitted over wireless network from the point of
transmission to the point of delivery needs to be extremely well maintained.

• Privacy: Wireless providers should take care to adhere to the legal requirements to
safeguard user privacy. This is particularly significant for location-based services
as there is an inherent possibility that the users can be tracked. However, the avail-
ability of location information can be turned into a security advantage.

Data transmitted over air with
weak authentication and integrity

Weak RF Interface

New application and technologies create
serendipitous threats and vulnerabilities

Insecurity always looms over internet due
to addition of various service providers

Service broadcast

Mobile device
Server

Fig. 4. Insecurity in Wireless Services

148 D. Acharya, N. Prabhu, and V. Kumar

Figure 4 depicts the security threats faced by the Wireless Services. We describe
the security needs of WWS with the following list and then present an idea of our
scheme to protect authorized users from serendipitous threats and malicious attacks.

 Since the mobile device has a weak radio frequency interface, data transmitted
over wireless networks such as passwords, personal information, security informa-
tion, etc. can be captured using digital RF scanning equipment. Most wireless pro-
tocols do not come with built-in encryption mechanisms. Additional security
measures such as secure connections and cryptography are definitely needed, es-
pecially for those applications transmitting sensitive data.

 Data transmitted over air has weak authentication and integrity thus allowing
evesdroppers to manipulate data and control information.

 Insecurity always exists over the internet due to incessant additon of large user
base and various service providers.

 As new Application to Application (A2A) integration increases, they create seren-
dipitous threats and new vulnerabilities to the existing WS Systems.

Location Signature Based Security and Authentication:

One of the biggest obstacles to the widespread adoption of WWS is winning the trust
of mobile users. A single security breach provides a very high profile way of under-
mining a wireless service. We propose the use of “Symbolic Location Coordinates”
identifying the real time location information of a user into existing security mecha-
nisms to improve the efficacy of authentication, authorization, and access controls.
We refer to this real time location information which will be unique for a user as “Lo-
cation Signature (LS)”.

Effective wireless application security depends on the ability to authenticate users
and grant access accordingly. Existing authentication and authorization mechanisms
fundamentally depend on information known to a user (password or keys), possession
of an authentication device (security token or crypto card) or information derived
from unique personal characteristics (biometrics). None of this is totally foolproof.
Symbolic Location information (building, street, area ID, base station id, etc.) of a
mobile device or user adds a fourth and new dimension to wireless application secu-
rity. It gives extra assurance to users of the wireless applications who want to perform
sensitive operations such as financial transactions, access valuable information, or
remotely control critical systems. It can supplement or complement existing security
mechanisms. The Location Signature can still be used as a security mechanism when
other systems have been compromised as it is and will always be unique for a user at
any point of time. For highly sensitive wireless applications, a real time Location Sig-
nature can be generated so that authorities can trace any malicious activity back to the
location of the intruder. Without the incorporation of LS, it will be difficult to trace
the origin of any malicious activity.

It is almost impossible to replicate a Location Signature because a user cannot exist
at two places at the same time and use it elsewhere to gain unauthorized entry. Even if
the information is intercepted during communications, an intruder cannot replicate that
data from some other place. A Location Signature is continuously generated from loca-
tion information on real-time basis and is unique to a particular place and time. Such
information becomes invalid after a short time interval, which means that the inter-

 Discovering and Using Web Services in M-Commerce 149

cepted Location Signature cannot be used to mask unauthorized access especially when
it is bound to the wireless protocol messages as checksums or digital signatures. Even
if the perpetrator uses other means to masquerade as a legitimate user, the complete set
of Location Signatures can be used to log the access trail [20].

We propose to develop and incorporate two-way authentication between the wire-
less client (mobile device) and the Web Server. The Web Server can give access to a
wireless client based on the security mechanisms along with the LS. The reverse
process - the client receiving Server’s LS - ensures a higher lever of security as it will
always be a unique mapping between the continuously moving user and the Web
Server, especially if this “handshaking” is done periodically. This requires an
additional message between the wireless device and the Web Server which is not
likely to affect the performance. Location information can provide evidence to
absolve innocent users. If illegal activity is conducted from a particular user account
by someone who has gained unauthorized access to that account, then the legitimate
owners of the account might be able to prove that they could not have been present in
the location where the activity originated.

The following example gives an idea of the working of WWS based on LS:

Suppose Ben is on his way back home to Overland Park and wants to buy coffee from
Star Bucks. He is tired and in no mood to search the nearest Star Bucks on his way
back. He uses his PDA and logs on to the Wireless Broadcast of WWS. He downloads
the views of Star Bucks and places the order. He types the necessary information
about the type of coffee he wants, the address of order delivery and initiates a query.
The mobile device coordinator of Ben’s PDA develops the location information for
delivery based on the address. It also develops the location signature and attaches
with the query. The LS consists of the mapping among various real time variables like
the time, building, street, area ID, mobile device ID, etc. After the LS is developed, it
is attached with the query and also stored in a log file corresponding to the time when
the signature was generated. The log file is not accessible to the user. This LS is a
real time variable (as the values of most of the variables changes every moment) but
will always be unique for a particular time. It is also cumulative, i.e., the new signa-
ture is a set of old signatures plus the new signature recently added. The Web Server
receives the views through the wireless channel and based on the location finds out
the service for Star Bucks which is nearest to Ben’s preferred location of Overland
Park. It sends back the response and asks Ben to place the order. Ben enters the nec-
essary information like his credit card number and the address for delivery and com-
pletes the order. When the server receives the information, it checks the log file and
matches the existing LS set with the newly received LS set. If the user is original and
not a malicious one, both the LS set will exactly match except the last entry which is
newly generated. The two sets will never match for a malicious user. The Web Server
completes the transaction and issues a response. This response will be available to
the user only when the received location signature set matches exactly with the signa-
ture set present in the mobile device cache.

Thus, location-based authentication can be done transparently to the user and be
performed continuously. This means that unlike most other types of authentication in-
formation, LS can be used as a common authenticator for all systems the user ac-

150 D. Acharya, N. Prabhu, and V. Kumar

cesses. This feature makes location-based authentication a good technique to use in
conjunction with single sign-on.

8 Conclusion and Future Work

In this paper we have proposed a wireless broadcast based WS architecture called
Web Bazaar in which a Universal Location Domain is used to develop unique loca-
tion ID for a service. The unique location ID is subsequently used for fast and effi-
cient service discovery. The wireless broadcast consists of the views of WSs. These
views are compact XML documents and they can be efficiently used to decrease the
message exchange between the mobile user and the web server which is essential in a
bandwidth limited wireless environment. Security of wireless applications is a huge
concern as the mobile unit has weak radio frequency interface. Moreover, increase of
application to application (A2A) integration in WSs introduces unexpected security
lapses. To prevent this, we have proposed a location based signature scheme which
will add another dimension to the existing set of authentication mechanisms. In our
future work, we intend to develop the location structure further by introducing a loca-
tion domain naming system similar to the existing Domain Name Services (DNS) for
translating domain names of IP addresses. This will enable simpler and more realistic
location identification for location dependent services. The location domain naming
system may also be used for the location signature scheme. We also intend to develop
the algorithm for the creation of location signature and authentication procedures of
the location based signature scheme.

References

1. Hary Chen, Anupam Joshi, Tim Fini, Dynamic service Discovery for mobile computing:
Intelligent Agents meet Jini in the Aether, cluster computing volume 4,issue 4, Special is-
sue on internet scalability.

2. Roy Friedman Caching Web services in Mobile Ad-hoc Networks: Opportunities and
Challenges, POMC’02 October 30,31,2002, Toulouse, France.

3. Rui Jose , Adriano Moreira and Helena Rodrigues, The Around architecture for Dynamic
Location based services, Mobile Networks and Applications, 8, 377-387,2003.

4. Bharat Chandra, Mike Dahlin, Lei Gao, Amjad Ali Khoja, Amol Nayate, Asim Razzaq,
Anil Sewani, Resource Management for Scalable disconnected Web services, WWW10,
May 1-5, Hong Kong.

5. Dipanjan Chakraborty, Filip Perich, Sasikanth Avancha, Anupam Joshi, DReggie: Seman-
tic Service Discovery for M-Commerce Applications, Workshop on Reliable and Secure
Applications in Mobile Environment, 20th Symp. Reliable Systems, 2001.

6. Anupriya Ankolenkar, Mark Burstein, Jerry R. Hobbs, Ora Lassila, David L. Martin, Drew
McDermott, Sheila A. McIlraith, Srini Narayanan, Massimo Paolucci, Terry R. Payne and
Katia Sycara, “DAML-S: web services description of Semantic web”. Proc. 1st Int. Se-
mantic Web Conference.

7. Upkar Varshney, “Location Management Support for Mobile Commerce Applications”. In
Proceeding of workshop WMC '01.

 Discovering and Using Web Services in M-Commerce 151

8. T. Pilioura, A. Tsalgatidou, S. Hadjiefthymiades, “Scenarios of using Web Services in M-
Commerce”, ACM SIGecom Exchanges, Vol. 3, No. 4, January 2003.

9. Olga Ratsimor, Vladimir Korolev Anupam Joshi, Timothy Finin, “Agents2Go: An Infra-
structure for Location-Dependent Service Discovery in The Mobile Electronic Commerce
Environment”. Proceedings of the WMC’01.

10. Lai Jin, Tatsuo Miyazawa, “MRM Server: A Context-aware and Location-based Mobile
E-Commerce Server”. In proceeding of workshop WMC '02 pages 33-39.

11. Jonathan P. Munson, Vineet K. Gupta, “Location-Based Notification as a General-Purpose
Service”. In proceeding of workshop WMC 02.

12. Tim Kindberg and John Barton: A Web-based nomadic computing system, Computer
Networks 35(4), March 2001, pp 443-456.

13. Stans Kleijnan and Srikanth Raju, An Open web services Architecture, Sun Microsystems,
INC.

14. Sebastian Fischmeister, Guido Menkhaus Wolfgang Pree MUSA-Shadow: Concepts,
Implementation, and Sample Applications: A Location-Based Service Supporting Multiple
Devices: 40th International Conference on Technology of Object-Oriented languages and
systems, Sydney, Australia, 2002.

15. Anastasios Ioannidis, Manos Spanoudakis Panos Sianas Ioannis Priggouris Stathes
Hadjiefthymiades Lazaros Merakos, Using XML and related standards to support Location
Based Services, SAC 04’, March 14-17,2004, Nicosia, Cyprus.

16. Chatschik Bisdikian, Jim Christensen, John Davis II, Maria R. Ebling, Guemey Hunt,
William Jerome, Hui Lei, Stephane Maes, Daby Sow, Enabling Location-Based
Applications, WMC 01 Rome Italy.

17. UDDI, www.uddi.org
18. WSDL, www.w3c.org/TR/wsdl
19. Dik Lun Lee, Jianliang Xu, Baihua Zheng, Wang-Chien Lee, Data Management in

Location-Dependent Information Services, IEEE Pervasive Computing, July-September
2002(Vol 1, No.3).

20. Harsha Srivatsa, IBM developer works, Location-based Security for Wireless
Applications, November, 2002.

M.-C. Shan et al. (Eds.): TES 2004, LNCS 3324, pp. 152 – 169, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Financial Information Mediation:
A Case Study of Standards Integration for

Electronic Bill Presentment and Payment Using
the COIN Mediation Technology

Sajindra Jayasena1, Stéphane Bressan2, and Stuart Madnick3

1 Singapore-MIT Alliance
Sajindra@mit.edu

2 School of Computing, National University of Singapore
steph@nus.edu.sg

3 Sloan School of Management, Massachusetts Institute of Technology
smadnick@mit.edu

Abstract. By its very nature, financial information, like the money that it
represents, changes hands. Each player in the financial industry, each bank,
stock exchange, government agency, or insurance company operates its own
financial information system or systems. Therefore the interoperation of
financial information systems is the cornerstone of the financial services they
support. E-services frameworks, such as web services, are an unprecedented
opportunity for the flexible interoperation of financial systems. Naturally the
critical economic role and the complexity of financial information led to the
development of various standards. Yet standards alone are not the panacea:
different groups of players use different standards or different interpretations of
the same standard. We believe that the solution lies in the convergence of
flexible E-services such as web-services and semantically rich meta-data as
promised by the semantic Web; then a mediation architecture can be used for
the documentation, identification, and resolution of semantic conflicts arising
from the interoperation of heterogeneous financial services. In this paper we
illustrate the nature of the problem in the Electronic Bill Presentment and
Payment (EBPP) industry and the viability of the solution we propose. We
describe and analyze the integration of services using four different formats: the
IFX, OFX and SWIFT standards, and an example proprietary format. To
accomplish this integration we use the COntext INterchange (COIN)
framework. The COIN architecture leverages a model of sources and receivers’
contexts in reference to a rich domain model or ontology for the description and
resolution of semantic heterogeneity.

1 Introduction

Effective and transparent interoperability is vital for the profitability and
sustainability of the financial Industry. Adhering to a standard is not feasible because
different institutions often utilize different standards. Even when within one standard

 Financial Information Mediation 153

or when standards seem to agree, one often finds different possible interpretations
originating in the particular practices and cultural background of the various players.

Typically, a Financial Institution (FI) that is involved in Electronic Bill Presentment
and Payment (EBPP) Industry, for instance operating in a European Union country, is
faced with a multitude of standards such as IFX (Interactive Financial Exchange
protocol)[10], OFX (Open Financial Exchange Protocol)[9] and the world wide inter-
bank messaging protocol, SWIFT [11]. Making matters worse, the FI may have its own
semantics for its internal information systems that represent the same business domain
in a different context. In the rest of this paper we would be referring to the set of
assumptions about the representation, syntax and interpretation of data according to
IFX, OFX, and SWIFT as IFX, OFX and SWIFT contexts and the assumptions of the
internal financial system of a Financial Institution as internal context.

The Price and Invoice concepts may be represented in different ways, e.g.,
excluding tax, with tax and fees, and even with inter-bank charges, resulting in
definitional conflict [1]. Interoperability of such definitional conflicts is vital in
distinguishing intra-bank and inter-bank payment across borders. Further, different
contextual heterogeneities exist on the currency, where in certain contexts like IFX
and OFX it is implicitly based on where the funds are directed. As a result of different
Account types and BANK/BRANCH code, financial institution would need to
maintain complex mappings between different contexts. In addition, there can be data
level heterogeneities like date formats and representations. Examples of possible
conflicts are summarized in Table 1. The columns for OFX, IFX, and SWIFT
represent actual real-life conflicts and similarities that exist between those standards,
while the conflicts addressed under the internal schema column refer to a
hypothetical, but realistic, financial system that would interact between OFX, IFX and
SWIFT standards.

Table 1. Some Conflicts in Different Standards

Property Internal Schema OFX IFX SWIFT 103/103+
Price 1000 FFR

(French Franc)
1000 USD + 1000 * 5% 1000 USD + 1000 *

5%
1000 USD + 1000* 5%
+ 10 USD (inter-bank
charge if outside EU)

Currency FFR Currency of country of
incorporation of payee
bank i.e. USD

Currency of country
of incorporation of
payee bank i.e. USD

Specified in message –
can be the payee or
payer’s currency

Account types CHK,SVG,
MNYMRT

CHECKING, SAVINGS DDA,SDA N/A

Bank and
branch code

Internal ID Dependent on the country
i.e. clearing #,sort #

Dependent on the
country i.e. clearing
#,sort #

BIC / BEI
(branch ID + bank Id)

Invoice Net Net + fees + tax Net + fees + tax Included in Amount –
N/A

Due date 23022002 20020223 2002-03-23 030223

The objective of this research is to analyze how COIN mediation technology [2, 3,
and 8] could be applied to provide a declarative, transparent yet effective mediation
solution to the sources of heterogeneity and conflicts that exist within and among the

154 S. Jayasena, S. Bressan, and S. Madnick

existing financial standards. Further we discuss the extension of our work in
mediating the conflict that cannot be addressed in the current COIN implementation.

The organization of the following sections is as follows. First we look at the
plethora of financial messaging standards that infest the financial world followed by a
review of related work in mediation technologies and specific work related to
interoperability in the financial industry. Then we look at the intricate details of the
COIN mediation framework. Next, the bulk of the paper focuses on how COIN can
be applied in one of the critical industries in the financial world – The Electronic Bill
Presentment and Payment (EBBP) industry. In the final section, we summarize and
briefly discuss future research.

2 Background and Related Work

2.1 Financial Standards

The standards addressed herein are involved in business banking, Electronic Bill
Presentment and Payment, Securities and Derivatives, Investments, Economic and
Financial indicators, straight through processing and other over the counter
derivatives. As a whole, the financial industry is cluttered with numerous protocols
and standards that are utilized in different segments in the financial industry.
Prominent ones are Financial Information Exchange protocol (FIX), S.W.I.F.T.,
Interactive Financial Exchange (IFX) and Open Financial Exchange (OFX). SWIFT is
the leader in inter bank transactions, and also has gained a significant market holding
on Securities and derivatives, payments as well as investments and treasury after
introducing a set of messages for securities and derivatives industry. OFX is the
leader in Intra-bank transaction systems followed by its successor, IFX. IFX is opting
to replace OFX, through its rich and extended messaging standards. Both of these
standards are widely used in business banking, Electronic Bill Presentment and
Payment, ATM/POS Industry. FIX is the leader in securities and derivatives market,
used by major stock markets around the world. Most of these protocols use XML as
the medium of messaging. Non-XML based standards like FIX and S.W.I.F.T have
come up with XML versions, namely FIXML and ‘SWIFTStandards XML’. In
addition to these major players, some of the other protocols are RIXML – Research
Information exchange and IRML – Investment research markup , focusing on fixed
income securities and Derivatives market, MDDL - Market Data Definition and
REUTERS in economic and industrial indicators, STPML – Straight through
processing markup language - a superset protocol to replace FIX,SWIFT ISITC and
DTC ID, FinXML – Financial XML which focuses on Capital market instruments and
straight through processing (STP) and finally FpML - Financial products markup
language focusing on interest rate swaps, forward rate agreements, Foreign Exchange
and other over the counter derivatives.

2.2 Different Mediation Strategies

When institutions exchanging financial information subscribe to different standards, a
mediator can be used to translate from one encoding scheme to another. The problems
that the mediator needs to solve are similar to those in data integration of

 Financial Information Mediation 155

heterogeneous sources, where the potential variety of encoding schemes can be
arbitrarily large in the latter case. The approaches addressing the issue of
interoperability of disparate information sources have been categorized in the
literature as static vs. dynamic [14], global vs. local schema [15], and tightly vs.
loosely coupled [16, 17] approaches. These groupings can roughly be thought of
referring to the same distinction characterized in [16] by:

• Who is responsible for identifying what conflicts exist and how they can be
circumvented; and

• When the conflicts are resolved.

We briefly look at these approaches under the categories of tightly and loosely
coupled approaches.

In tightly coupled approaches, the objective is to insulate the users from data
heterogeneity by providing a unified view of the data sources, and letting them
formulate their queries using that global view. In bottom up approaches the global
schema is constructed out of heterogeneous local schemas by going through the
tedious process of schema integration [18]. In top-down approaches global schema is
constructed primarily by considering the requirements of a domain, before
corresponding sources are sought. In tightly coupled approaches, data heterogeneities
between sources are resolved by mapping conflicting data items to a common view.
Early prototypes which have been constructed using the tight-coupling approach
include Multibase [19], ADDS [20], and Mermaid [21]. More recently, the same
strategy has been employed for systems adopting object-oriented data models (e.g.
Pegasus [22] based on the IRIS data model), frame-based knowledge representation
languages (e.g. SIMS [17] using LOOM), as well as logic-based languages (e.g.
Carnot [23] using CycL, an extension of first-order predicate calculus).

Loosely coupled approaches object to the feasibility of creating unified views on
the grounds that building and maintaining a huge global schema would be too costly
and too complex. Instead they aim to provide users with tools and extended query
languages to resolve conflicts themselves. Hence, instead of resolving all conflicts a
priori, conflict detection and resolution are undertaken by receivers themselves, who
need only interact with a limited subset of the sources at any one time. MRDSM [15]
is probably the best-known example of a loosely-coupled system, in which queries are
formulated using the multidatabase language MDSL. Kuhn et al [24] have
implemented similar functionalities in VIP-MDBS, for which queries and data
transformations are written in Prolog. They showed that the adoption of a declarative
specification does in fact increase the expressiveness of the language. Litwin et al
[25] has defined another query language called O*SQL which is largely an object-
oriented extension to MDSL.

In the past two decades, various mediation strategies have been developed
attempting to tackle these semantic heterogeneity problems. We will not give a
detailed review of these approaches; interested readers are referred to [29, 30, 31] for
recent surveys. For example, the authors of [28] use a domain model and source
modeling to realize and optimize queries to distributed and heterogeneous sources.
Generally, under these strategies, the mediator needs to be rebuilt when the
underlying sources or user requirements change, which hinders the extensibility of the
approach. We will discuss a middle ground approach that overcomes these drawbacks
in Section 3.

156 S. Jayasena, S. Bressan, and S. Madnick

2.3 Current Integration and Mediation Strategies in Financial Standards

Due to intricacies and inefficiencies in using and integrating multiple standards and
additional overhead, financial institutions as well as government organizations have
put effort in merging different standards or coming up with new super set standards to
replace the existing diverse standards.

One example is the effort by FIX, SWIFT, OPEN APPLICATIONS GROUP and
THE TREASURY WORKSTATION INTEGRATION STANDARDS TEAM
(TWIST) to outline a framework of cooperation and coordination in the area of the
content and use of a core payment kernel XML transaction.

Also the Organization for the Advancement of Structured Information Standards
(OASIS) is carrying out research on one XML based super set protocol that would
cover all business areas. But all these effort are focused on futuristic direction rather
than the problem at hand. The effort of migrating the diverse world-wide standard to a
common standard would be an enormous task. Current business integration efforts
like the MicrosoftTM BizTalk Server support diverse messaging standards integration
through its rich messaging and mapping framework, but lack the sophistication in
mediating complex ontological and contextual heterogeneities.

3 The COntext INterchange (COIN) Approach

The COntext INterchange (COIN) framework is neither a tightly coupled nor a
loosely coupled system; rather, it is a hybrid system. It uses a mediator-based
approach for achieving semantic interoperability among heterogeneous information
sources. The approach has been detailed in [8]. The overall COIN approach includes
not only the mediation infrastructure and services, but also wrapping technology and
middleware services for accessing source information and facilitating the integration
of the mediated results into end-users’ applications. The set of context mediation
services comprises a context mediator, a query optimizer, and a query executioner.

The context mediator is in charge of the identification and resolution of potential
semantic conflicts that exist in a query. This automatic detection and reconciliation of
conflicts present in different information sources is made possible by general
knowledge of the underlying application domain, as well as the informational content
and implicit assumptions associated with the receivers and sources.

The declarative knowledge is represented in the form of a domain model, source
descriptions, a set of elevation axioms, a set of context definitions, and a conversion
library. The result of the mediation is a mediated query. To retrieve the data from the
disparate information sources, the mediated query is transformed into a query
execution plan, which is optimized, taking into account the topology of the network of
sources and their capabilities. The plan is then executed to retrieve the data from the
various sources; results are composed as a message, and sent to the receiver.

Domain model: The domain model defines the different elements that are needed to
implement the strategy in a given application: The domain model a collection of rich
types (semantic types, attributes, etc.) and relationships (is-a relationship) defining

 Financial Information Mediation 157

the domain of discourse for the integration strategy. This declarative knowledge about
the domain ontology is represented independent of the various information sources
and represents the generic concepts associated with the domain under consideration.
Semantic types resemble the different entities in the underlying domain. For example
Account, Person can be entities in a financial domain. The attributes represents the
generic features those semantic types can have. i.e. bankBalance, creationDate
attributes of Account semantic type. Further, attributes can be used to infer
relationships between different entities. For example the holder attribute of an
Account could refer to a person semantic type. In some instance the attribute can
constitute a basic type; either a string or a numeric value represented by the super
semantic type, basic.

Context: Context axioms are used to capture different semantic, contextual, and
ontological representations that the underlying data sources contain. The context
definitions define the different interpretations of the semantic objects from the
different sources’ or receiver’s point of view. We use a special type of attributes,
modifiers, to define the context of a data type. For example currency modifier may
define the context of objects of semantic type moneyAmount, when they are
instantiated in a specific context (i.e., currency is USD in that specific context).

Sources: All sources are represented using the Source concept where the type of the
sources could be any data source ranging from a relational table, an XML stream, to a
web page. Different wrapper implementations, including the web data extraction
engine Cameleon [12], provide different interfacing mechanisms to diverse sources.

Elevation Axioms: The sources and the domain model needs to be linked in order to
facilitate mediation. This is achieved through the definition of Elevation axioms. Its
usage is two fold. First, each source is given a Context definition. Second, each
attribute of the source is elevated to a particular semantic object (instances of
semantic types) that is represented in the Domain Model. This facilitates in bridging
the link between the context-independent, ‘generic’ domain model and the context
dependent sources.

Conversion library: Finally, there is a conversion library, which provides conversion
functions for each modifier that specifies the resolution of potential conflicts. The
relevant conversion functions are gathered and composed during mediation to resolve
the conflicts. No global or exhaustive pair-wise definition of the conflict resolution
procedures is needed. The mediation is performed by a procedure, which infers from
the query and the knowledge base a reformulation of the initial query in the terms of
the component sources. The procedure itself is inspired by the abductive logic
programming framework [27]. One of the main advantages of the abductive logic-
programming framework is the simplicity in which it can be used to formally combine
and to implement features of query processing, semantic query optimization, and
constraint programming.

In the next section we would show how these concepts are applied in our case study.

158 S. Jayasena, S. Bressan, and S. Madnick

4 Case Study

4.1 Electronic Bill Presentment and Payment Domain

In order to demonstrate the usage of the COIN framework, a subset of the standards,
namely the ‘Electronic Bill Presentment any Payment – (EBPP)’ domain is selected.
The EBPP domain is a rich subset of the financial services messaging frameworks
that have considerable amount of heterogeneities. The main standards are OFX, IFX
for intra-bank payment schemes and SWIFT for inter-bank payment and funds
transfer.

The overall functionality can be visualized from Figure 1 in using those standards.
The focus is on the analysis of various heterogeneities that lie among these standards
and financial systems as well as how they are handled using COIN. The key
intermediaries in an EBPP scheme are as follows:

• Biller Payment Provider (BPP) is an agent (usually a financial institution) of the
Biller that originates and accepts payments on behalf of the Biller.

• Biller Service Provider (BSP) is an agent of the Biller that provides an electronic
bill presentment and payment service for the Biller

• Customer Payment Provider (CPP) is an agent (usually a financial institution) of
the Customer that originates payments on behalf of the Customer.

• Customer Service Provider (CSP) is an agent of the Customer that provides an
interface directly to customers, businesses, or others for bill presentment. A CSP
enrolls customers, enables presentment, and provides customer care, among other
functions.

• Financial Institution (FI) is an organization that provides branded financial services
to customers. Financial Institutions develop and market financial services to
individual and small business customers. They may serve as the processor for their
own services or may choose to outsource processing.

Both IFX and OFX provide XML based messaging framework for individuals as
well as businesses in bill payment and presentment electronically. But the most
acclaimed inter-bank fund transfer framework, SWIFT uses a non XML messaging
protocol and recently went through a major restructuring in phasing out one of the
most utilized messaged for inter-bank customer fund transfer, the M100, and
introduced modified versions of MT103 and MT103+.

Fig. 1. Interfaces in EBPP

 Financial Information Mediation 159

In order to depict the usage of COIN in EBPP mediation in a practical scenario,
we have broken down the analysis to three main areas that spans from a customer
initiating a Bill payment to its subsequent verification by the Biller. In addition to
analyzing these standards separately we address how they are utilized in practical
scenarios. All three standards inevitably require interfacing with the internal
accounting and financial system of a financial system to make a successful
payment from the customer to the Biller as in figure 1. For example a bill
payment from a customer might interact with an FI’s IFX based system which in
turn has to interface with customer’s bank’s internal accounting system. Then to
facilitate the inter-bank funds transfer to the Biller’s bank, a separate interfacing
is required with a global inter bank messaging framework like SWIFT. Finally at
the Biller’s bank it needs to be represented and stored in its proprietary financial
system. Finally the biller should be able to view the payments through its bank’s
bill presentment system which possibly utilizes OFX standard, where the internal
representation needs to be transformed according to OFX’s syntax and semantics.
Therefore we have introduced a hypothetical internal system that represents the
true nature of a realistic situation to bridge the gap between the financial
standards as modeled in a real-life situation. The conflicts analysis and mediation
with the diverse financial standards have been analyzed with respect to the
hypothetical internal system of a Financial Institution which could be an in-house
developed system or third-party (off the shelf) system. This internal system is
represented by the term ‘internal context’. Following are the three main areas
analyzed in the case study.

• Mediation between an internal context and OFX context.
• Mediation between an internal context and IFX context.
• Mediation between an internal context and SWIFT context.

The IFX, OFX and SWIFT contexts represent the semantics and definitions
adopted by IFX, OFX and SWIFT messaging frameworks respectively. SWIFT
distinguishes intra European Union (EU) fund transfer and outside EU fund transfers
for accounting for inter-bank charges.

Figure 2 represents the context independent, COIN domain ontology for the EBPP
domain denoting some of the key the concepts used by IFX, OFX, SWIFT and
financial institution’s own internal schema. This was constructed by exploring the
business domain in EBPP and the relevant message handling semantics used in these
diverse standards. The semantic types (entities) represents the business entities that
encompass the main functionalities in EBPP Industry The sources and their conflict
are mapped to these semantic types (entities). The semantic types denote the entities
and their relationships in the EBPP domain like Payment, Account etc. is-a relation
denotes an inheritance relationship between semantic types. A semantic type may
have certain Attributes (e.g., payment has payee, payer accounts, amount etc). The
entities that constitute conflicts in these contexts are modeled through modifiers. As
an example, the paymentAmount can include/exclude various taxes in different

160 S. Jayasena, S. Bressan, and S. Madnick

contextual representations and in SWIFT it would incur an additional inter-bank
service charge. These are represented by COIN modifiers paymentScheme,
includesInterBankCharge respectively. Further, monetary amounts could be
expressed in different currencies. This is modeled using the currency modifier for the
super-semantic type moneyAmount. This represents how COIN models inheritance of
contextual knowledge for different entities.

In an actual scenario, the heterogeneities of the standards and the mappings needed
for mediation would be analyzed and formulated by a business analyst or a person
working for the respective Financial Institution. The following sections addresses
each of these three cases separately

Fig. 2. Domain Ontology for EBPP

4.2 Internal Schema Versus OFX

First we will look at the mediations between OFX and an internal schema of a
financial institution. Table 2 summarizes the heterogeneities identified in the two
schemas. As denoted in COIN’s mediation strategy, the modifiers and relevant
conversion functions are the main ingredients in facilitating the mediation for a
particular heterogeneity exiting between two different contexts. As shown in the table,
there are different types of heterogeneities between the two contexts. The significant
conflicts are payment amount, currency type and Account code reference identifiers.
They are discussed below.

 Financial Information Mediation 161

Table 2. Conflicts in Internal and OFX Contexts

Payment Amount – The mediation strategy for payment amount is as follows. The
mediator needs to apply two conversion functions in order to obtain the mediated
payment amount, namely the currency conversion inherited from the moneyAmount
super semantic type, and the tax adjustment for the payment. For simplicity let’s
assume that in both contexts the currency is denoted in three letter ISO 4217 format
(i.e. USD, GBR, and EUR etc).

Assume that the query ‘select AMOUNT FROM PAYMENT’ is called in OFX
context;

First, payment amount is adjusted for the tax inclusion. For simplicity let’s assume
that the applicable tax is GST’. Then;

(1)

In the COIN framework, the mediation formulas are translated into logical
expressions of the COIN theoretical model [1]. Later these expressions are
implemented in prolog and evaluated by an abduction engine implemented in the
same language [13]. The following describes the logical representation of the formula
(1) for this example.

The formula below describes a non-commutative mediation of paymentType object
depending on its modifier paymentScheme, which in this case holds the values
“noTax” or “withTax”. The Ctxt defines the destination context. The conversion in
simple terms would be to retrieve the Rate for the tax “GST” from the elevated
relation ‘OFX_TAX_TYPES_p' which is an elevation mapped to relation
‘OFX_TAX_TYPES’ under OFX Context (The destination context in this case) and

162 S. Jayasena, S. Bressan, and S. Madnick

utilizes in the tax calculation. The value predicate in the formula defines a value of a
particular semantic object under a certain context.

cvt(noncommutative,paymentAmt,_O,paymentScheme,Ctxt,"nota
x",Vs,"withtax",Vt) ⇐

value(TaxName,Ctxt,"GST"),
'OFX_TAX_TYPES_p'(TaxName,_,Rate),
value(Rate,Ctxt,RR),
(Vtemp is RR * Vs),
(Vt is Vs + Vtemp).

Further, this resembles an Equational ontological heterogeneity addressed in [5],
which is a clear example of differences in the contexts of OFX and internal contexts.
But the ontological conflict has been transformed into a contextual heterogeneity by
way of matching the definitional equations as in [5].

Then, this tax adjusted payment needs to be mediated to the currency of OFX
context. This requires a dynamic modifier to extract the currency value depending on
the official currency in the incorporated country of the payee’s bank as given below.

⇐
⇐
⇐
⇐
⇐

(2)

The following logical representation describes how the value of modifier currency
for paymentAmount is obtained for OFX context dynamically through the
relationships between semantic objects.

modifier(paymentAmt,_O,currency,ofx,M) ⇐
(attr(_O,paymentRef,Payment),

attr(Payment,payeeAct,Account),
 attr(Account,location,Location),
 attr(Location,bank,Bank),
 attr(Bank,countryIncorporated,Country),
 attr(Country,officialCurrency,M))).

For example the predicate attr (Payment,payeeAct,Account) defines the attribute
relationship ‘payeeAct’ between the Payment and Account semantic objects. This
relation can be mapped to underlying relationships in different contexts as shown in
the following logical representation.

attr(Payment,payeeAct,PayeeAcct)⇐

 ('INTERNAL_PAYMENT_p'(Payment,_,_,_,_,_,PayeeAcct,_).

attr(Payment,payeeAct,PayeeAcct) ⇐

 ('OFX_PAYMENT_p'(Payment,_,_,_,_,_,PayeeAcct,_).

The two statements correspond to how the attribute relation payeeAcct has been
elevated to two elevation relations with their attributes, mapped in INTERNAL and
OFX contexts.

 Financial Information Mediation 163

Account Type Code – This is represented as heterogeneity in enumerated data types
in defining the account type codes in the three contexts. The following summarizes
the enumerated data mapping in the three contexts. Since there can be more than two
types of financial standards, rather than having mappings between each standard , we
adopt a ‘Indirect conversion with ontology inference’ strategy [13] where we
represent the different account types in the ontology itself and providing mapping
between the context independent ontology’s enumerated type and the context
sensitive type codes. The context model would then map each security type context
construct into its corresponding security type ontology construct.
 Therefore the conversion from INTERNAL to OFX would be,

⇐

(3)

4.3 Internal Schema Versus IFX

After looking at some of the interoperability issues between internal context and
OFX, now we would delve into the newer standard, IFX, which has more features and
detailed representations. Table 3 shows the different types of heterogeneities. The
conflicts of account type, date format, phone number format and currency types are
similar to the OFX scenarios. The new conflicts are the extended conflicts identified
in payment amount and introduction of invoice related conflicts.

Both IFX and OFX handle complex business payment transactions for business
customers. This requires incorporating multiple invoice details attached to the
payment aggregates when both the biller and customer are business entities. The older
OFX provides a basic mechanism of incorporating invoice details like invoice
discounts, line items in invoices etc. But the newer IFX extends this by providing
more elaborate aggregates constituting different tax schemes as well as fees (late fees,
FoRex fees, etc.) that are applicable to invoice.

164 S. Jayasena, S. Bressan, and S. Madnick

Mediating Invoice Amount
Each payment can have at least one invoice aggregate that represent the different
invoices paid through a particular invoice. In an internal schema the invoice amount
might be represented as the net amount, where the taxes and fees would be aggregated
when the bill is presented or invoiced. But the IFX context, the Invoice amount
consists of the various taxes and fees that could be added to the net amount.

Table 3. Conflict between Internal and IFX contexts

The mediation between the two invoice amounts represents an equational
ontological conflict (EOC) [5] that would be resolved through introduction of a set of
modifiers that would match the two different definitional equations. Each invoice
would have multiple fees .i.e. an invoice would have FoRex, late payment fees,
import fees as well as multiple taxes like GST, withholding taxes etc

Therefore the relationship between the two definitional equations for invoice
amount is:

(4)

Let us say we executed the query ‘select INVOICE_AMOUNT from INTERNAL_
INVOICE’ in IFX context where the relation INTERNAL_INVOICE’ is defined for
internal context.

The following shows the mediated SQL query automatically generated by the
COIN mediation framework considering all the conflicts associated between internal
and IFX contexts:

 Financial Information Mediation 165

select
(internal_invoice.INVOICE_AMOUNT+(((internal_invoice.INVOICE_AMOUNT*ifx_
tax_types.AMOUNT)+(internal_invoice.INVOICE_AMOUNT*ifx_tax_types2.AMOUNT
))+(ifx_fees_types.AMOUNT+(internal_invoice.INVOICE_AMOUNT*ifx_fees_type
s2.AMOUNT))))

from (select 'GST', TYPE, AMOUNT from ifx_tax_types
 where TAX_NAME='GST') ifx_tax_types,

(select 'IMPORT', TYPE, AMOUNT from ifx_tax_types
 where TAX_NAME='IMPORT') ifx_tax_types2,

(select 'LATE', TYPE, AMOUNT from ifx_fees_types
 where FEES_NAME='LATE') ifx_fees_types,

(select 'DELIVERY', INVOICE_NO from ifx_invoice_fees
where FEE_NAME='DELIVERY') ifx_invoice_fees,
(select 'LATE', INVOICE_NO from ifx_invoice_fees

 where FEE_NAME='LATE') ifx_invoice_fees2,
(select 'IMPORT', INVOICE_NO from ifx_invoice_taxes

 where TAX_NAME='IMPORT') ifx_invoice_taxes,
(select 'GST', INVOICE_NO from ifx_invoice_taxes

 where TAX_NAME='GST') ifx_invoice_taxes2,
select INVOICE_NO, PAYMENT_ID, INVOICE_AMOUNT, DESCR,
INVOICE_DATE,
DISCOUNT_RATE,DISCOUNT_DESC from internal_invoice) internal_
invoice,
(select 'DELIVERY', TYPE, AMOUNT rom ifx_fees_types

 where FEES_NAME='DELIVERY') ifx_fees_types2
where ifx_invoice_fees.INVOICE_NO = ifx_invoice_fees2.INVOICE_NO
and ifx_invoice_fees2.INVOICE_NO = ifx_invoice_taxes.INVOICE_NO
and ifx_invoice_taxes.INVOICE_NO = ifx_invoice_taxes2.INVOICE_NO
and ifx_invoice_taxes2.INVOICE_NO = internal_invoice.INVOICE_NO

Some readers may have so far considered that identifying and resolving semantic
heterogeneity is a small matter of handling date formats, currency exchange, and
other accounting conventions. We observe now that the net effect and accumulation
of such small matters makes the programmer’s task impossible. A programmer not
equipped with the COIN mediation system must devise and create the above query. A
programmer using the COIN mediation system can type the original query: ‘select
INVOICE_AMOUNT from INTERNAL_INVOICE’ in IFX context and rely on COIN
to automatically mediate the query. The application gains in clarity of design and
code, as well as in scalability. The sharing of domain knowledge, context
descriptions, and conversion functions improve the knowledge independence of the
programs and their maintainability.

4.4 Some Insight to Conflicts Analysis Between Internal and SWIFT Contexts

The SWIFT protocol is mainly involved in inter-bank cross border transactions. It
uses globally unique identifiers for bank code like BIC, BEI. For e.g. the BCI code
comprise of concatenation of bank code, country code and location code (defined by
ISO 9362), compared to just a bank code representation used in internal schema. This
peculiar heterogeneity requires a non-commutative building up of a composite bank
identifier when mediating from internal to SWIFT context. The following represents a
logical formula for the mediation for the concatenation. The predicate notations were
discussed in a previous example.

166 S. Jayasena, S. Bressan, and S. Madnick

cvt(noncommutative,bankLoc,O,idType,Ctxt,"single",Vs,"composite",Vt) ⇐
('SWIFT_BANK_BCI_p'(BANK, LOC, COUNTRY), value(BANK,Ctxt,Vs),
value(LOC,Ctxt,Locc), value(COUNTRY,Ctxt,Countryc),
(Vtemp is Vs + Locc), (Vt is Vtemp + Countryc))).

Usage of Sub Contexts
Under the SWIFT context, depending on whether the transaction is between financial
institutions inside the EU or outside, a bank handling fee is credited to the payment
amount. This can be modeled using the sub context concept of COIN. A sub context
derives all the super context based modifier values while having specialized modifier
values for extended features. The following logical formulas denote how this can be
modeled in COIN

is_a(swift_intraEU,swift)
is_a(swift_outsideEU,swift)

Then a query like ‘select amount from payment’ in outsideEU context, called on a
relation defined for internal context, is resolved by adding the handling charges on top
of the local applicable tax (inherited from SWIFT context) as denoted in the following
mediated datalog.

answer('V15'):-
'INTERNAL_PAYMENT'('V14', 'V13', 'V12', 'V11', 'V10', 'V9', 'V8', 'V7'),
'TAX_TYPES'("GST", 'V6', 'V5'), 'V4' is 'V5' * 'V12',
'V3' is 'V12' + 'SWIFT_CHARGE_TYPES'
("outsideEU", V2', 'V1'),
'V15' is 'V1' + 'V3'.

Note that although datalog and prolog representations are used internally within
COIN and shown in this paper, the actual COIN system provides a graphical and user-
friendly interface so that data administrators setting up the knowledge representations
(e.g., domain models, context) need not know anything about these internal
representations.

5 Conclusion and Future Work

We identified different semantic, ontological heterogeneities that exist in different
financial messaging standards. It showed that indeed mediation between these is not a
trivial task, yet is critical and important to the globalization of the financial industry.
Further we show that an effective answer is to have a mediation service that provides
automatic and a transparent mediation without requiring engineering new standards.

Table 4. Temporal Heterogeneities

 Financial Information Mediation 167

We have shown that the COIN approach is capable of mediating the different
heterogeneities that exist in different financial standards and internal contexts of
Financial Institutions. Our approach in modeling a business domain and mapping
different contextual representations and values through a declarative manner
demonstrates the extensibility, flexibility and user-friendliness of the COIN
framework.

One aspect that is lacking in COIN and that we are currently investigating is the
modeling temporal heterogeneities like the examples denoted in table 4. We are
currently studying different aspects of temporal heterogeneities which are sources of
conflicts among financial standards.

Acknowledgements

The authors wish to acknowledge the extensive help of Aykut Firat, Hongwei Zhu,
Philip Lee and Allen Moulton of MIT. The research reported herein has been
supported, in part, by the Singapore-MIT Alliance.

References

[1] A.Firat .”Information Integration using Contextual Knowledge and Ontology Merging”,
PhD Thesis, MIT,2003

[2] C.H. Goh, S.Bressan.S.Madnick,M.Siegel, ”Context Interchange :New Features and
Formalisms for the Intelligent Integration of Information”, ACM TOIS, vol. 17,pp 270-
293,1999.

[3] A.Bressan , C.H. Goh, “Answering Queries In Context”, Proceedings of “Flexible
Query Answering Systems”. Third International Conference, FQAS, 1998,
Roskild,Denmark.

[4] S.Madnick,A.Moulton,M.Siegel, “Semantic Interoperability in the Fixed Income
Securities Industry: A Knowledge Representation Architecture for dynamic integration
of Web-based information”, HICSS,Hawai,2003

[5] S.Madnick, A.Firat, B.Grosof, “Knowledge Integration to overcome Ontological
Heterogeneity: Challenges from Financial Information Systems”,pp. 183-
194,ICIS,Barcelona,Spain, 2002

[6] S.Madnick,A.Moulton,M.Siegel, “Context Interchange Mediation for Semantic
Interoperability and Dynamic Integration of Autonomous Information Sources in the
Fixed Income Securities Industry”, (WITS), Barcelona, Spain, December 14-15, 2002,
pp.61-66

[7] S.Madnick,S. Bressan, C.H. Goh, T. Lee, and M. Siegel “A Procedure for Mediation of
Queries to Sources in Disparate Context”, Proceedings of the International Logic
Programming Symposium, October 1997

[8] S.Madnick, S. Bressan, C. Goh, N. Levina, A. Shah, M. Siegel ,“Context Knowledge
Representation and Reasoning in the Context Interchange System” , Applied
Intelligence: The International Journal of Artificial Intelligence, Neutral Networks, and
Complex Problem-Solving Technologies, Vol 12, Number 2, September 2000, pp. 165-179

[9] Open Financial Exchange Specification OFX 2.0.2, Open Financial Exchange,
http://www.ofx.net/ofx/de_spec.asp

168 S. Jayasena, S. Bressan, and S. Madnick

[10] Interactive Financial Exchange –IFX version 1.5, IFX Forum, Inc,
http://www.ifxforum.org/ifxforum.org/standards/standard.cfm

[11] Society for Worldwide Interbank Financial Telecommunication (S.W.I.F.T), Standard
Release 2003, http://www.swift.com/index.cfm?item_id=5029

[12] S.Madnick, A. Firat and M. Siegel, “The Caméléon Web Wrapper Engine”, Proceedings
of the VLDB2000 Workshop on Technologies for E-Services, September 14-15, 2000

[13] S.Madnick, A. Moulton and M. Siegel “Semantic Interoperability in the Securities
Industry: Context Interchange Mediation of Semantic Differences in Enumerated Data
Types”, Proceedings of the Second International Workshop on Electronic Business
Hubs: XML, Metadata, Ontologies, and Business Knowledge on the Web (WEBH2002),
Aix En Provence, France, September 6, 2002

[14] Kuhn, E., Puntigam, F., Elmagarmid A. (1991). Multidatabase Transaction and Query
Processing in Logic, Database Transaction Models for Advanced Applications, Morgan
Kaufmann Publishers.

[15] Litwin, W., Abdellatif, A. (1987), “An overview of the multi-database manipulation
language MDSL”. Proceedings of the IEEE, 75(5):621-632.

[16] Goh, C. H. (1997), “Representing and Reasoning about Semantic Conflicts in
Heterogeneous Information Systems, MIT Ph.D. Thesis.

[17] Arens, Y., Knoblock, C., Shen, W. (1996). Query Reformulation for Dynamic
Information Integration. Journal of Intelligent Information Systems 6(2/3): 99-130.

[18] Batini, C., Lenzerini, M., Navathe, S. B. (1986) “A Comparative Analysis of
Methodologies for Database Schema Integration”, ACM Computing Surveys 18(4):
323-364.

[19] Landers, T., Rosenberg, R (1982) “An Overview of MULTIBASE”, International
Symposium on Distributed Data Bases”, 153-184

[20] Breitbart, Y., Tieman.L. (1984), “ADDS - Heterogeneous Distributed Database System”,
Proceedings of the Third International Seminar on Distributed Data Sharing Systems, 7- 24.

[21] Scheuermann, P., Elmagarmid, A. K., Garcia-Molina, H., Manola, F., McLeod,
D.,Rosenthal, A., Templeton, M. (1990), “Report on the Workshop on Heterogeneous
Database Systems” held at Northwestern University, Evanston, Illinois, December 11-13,

[22] Ahmed, R., De Smedt, P., Du, W., Kent, W., Ketabchi, M., Litwin, W.,, Rafii,A.,,Shan,
M. (1991).” The Pegasus Heterogeneous Multidatabase System”. IEEE Computer
24(12): 19-27.

[23] Collet, C., Huhns, M. N., Shen, W. (1991), “Resource Integration using a large
knowledge base in Carnot”, IEE Computer, 24(12):55-63.

[24] Kuhn, E., Ludwig, T. (1988), “VIP-MDBS: a logic multidatabase system”, Proceedings
of the first international symposium on Databases in parallel and distributed systems,
p.190-201, December 05-07, Austin, Texas, USA.

[25] Litwin, W. (1992). “O*SQL: A language for object oriented multidatabase
interoperability”. In Proceedings of the Conference on IFIP WG2.6 Database Semantics
and Interoperable Database Systems (DE-5) (Lorne, Victoria, Australia), D. K. Hsiao, E.
J. Neuhold, and R. Sacks-Davis, Eds. North-Holland Publishing Co., Amsterdam, The
Netherlands, 119-138.

[26] Baral, C., Gelfond, M. (1994). "Logic Programming and Knowledge Representation",
Journal of Logic Programming, 19,20:73-148.

[27] Kakas, A. C., Michael, A. (1995). “Integrating abductive and constraint logic
programming”, To appear in Proc. International Logic Programming Conference.

 Financial Information Mediation 169

[28] S. Patel and A. Sheth, "Planning and Optimizing Semantic Information Requests using
Domain Modeling and Resource Characteristics," Proceedings of the 6th Intl Conf on
Cooperative Information Systems (CoopIS), Trento, Italy, September 5-7, 2001, pp. 135-149.

[29] P. Ziegler and K R. Dittrich. (2004)., “User-Specific Semantic Integration of
Heterogeneous Data: The SIRUP Approach”. International Conference on Semantics of a
Networked World (IC-SNW 2004), Paris, France, June 17-19, 2004

[30] Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H.,
Hubner, S., (2001), “Ontology-Based Integration of Information – A Survey of Existing
Approaches”, Proceedings of the IJCAI-01 Workshop on Ontologies and Information
Sharing, Seattle, USA, 4 –5 August, 2001.

[31] M. Lenzerini. (2002). “Data integration: a theoretical perspective”, Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pp233 - 246

Author Index

Acharya, Debopam 136
Alonso, Gustavo 39

Barga, Roger S. 69
Berardi, Daniela 15, 80
Bordeaux, Lucas 15, 54
Bressan, Stéphane 152

Calvanese, Diego 80
Chen, Huiqiong 95
Chiu, Dickson K.W. 107
Comuzzi, Marco 29

De Giacomo, Giuseppe 80

Hung, Patrick C. K. 107

Jayasena, Sajindra 152
Jia, Yan 122

Kumar, Vijay 136

Lenzerini, Maurizio 80
Li, Qing 107

Liu, Bixin 122
Lomet, David 1

Madnick, Stuart 152
Mecella, Massimo 15, 80

Pautasso, Cesare 39
Pernici, Barbara 29
Prabhu, Nitin 136

Salaün, Gwen 15, 54
Shan, Jing 69
Shan, Zhe 107
Shi, Baile 95

Wang, Yufeng 122

Xie, Zhipeng 95

Yu, Yijun 95

Zhang, Qing 95
Zhou, Bin 122

	Frontmatter
	TES 2004
	Robust Web Services via Interaction Contracts
	When are Two Web Services Compatible?
	Negotiation Support for Web Service Selection
	From Web Service Composition to Megaprogramming
	Using Process Algebra for Web Services: Early Results and Perspectives
	Flexible Coordination of E-Services
	$\mathcal {ESC}$: A Tool for Automatic Composition of {\itshape e-}Services Based on Logics of Programs
	Dynamically Self-Organized Service Composition in Wireless Ad Hoc Networks
	Designing Workflow Views with Flows for Large-Scale Business-to-Business Information Systems
	A Practice in Facilitating Service-Oriented Inter-Enterprise Application Integration
	Discovering and Using Web Services in M-Commerce
	Financial Information Mediation: A Case Study of Standards Integration for Electronic Bill Presentment and Payment Using the COIN Mediation Technology

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

